

Общие сведения

- □ Серная кислота принадлежит к числу сильных кислот и является самой дешевой из них (она более чем в 2 раза дешевле азотной и серной).
- Мировое производство серной кислоты превышает 100 млн.т в год; это больше, чем вырабатывается азотной, соляной, уксусной и других кислот вместе взятых.
- □ Серная кислота применяется в производстве самых разнообразных веществ: минеральных солей и кислот, всевозможных органических соединений, красителей, дымообразующих и взрывчатых веществ и т. д.
- Безводная 100%-ная серная кислота (моногидрат) представляет собой тяжелую, маслянистую и бесцветную жидкость, которая смешивается с водой во всех отношениях с выделение большого количества тепла. Плотность H₂SO₄ при 20 °C равна 1,83 г/см³, температура кипения 286 °C, температура замерзания 10,5 °C.
 - Серную кислоту, в которой растворено избыточное количество серного жилрида SO_3 , называют олеумом $H_2SO_4 \cdot nSO_3$.

Методы получения

Контактный

(кат. окислы ванадия с добавками SiO_2 , Al_2O_3 , K_2O , CaO, BaO)

$$SO_2 + \frac{1}{2}O_2 = SO_3$$

$$SO_3 + H_2O = H_2SO_4$$

Нитрозный

$$N_2O_3 + 2 H_2SO_4 = 2 NOHSO_4 + H_2O$$

 $NOHSO_4 + H_2O = H_2SO_4 + HNO_2$

$$SO_2 + H_2O = H_2SO_3$$

2 $HNO_2 + H_2SO_3 = H_2SO_4 + 2 NO + H_2O$

Промышленный метод получения

Химическая схема производства

Химическая схема включает три основных химических процесса:

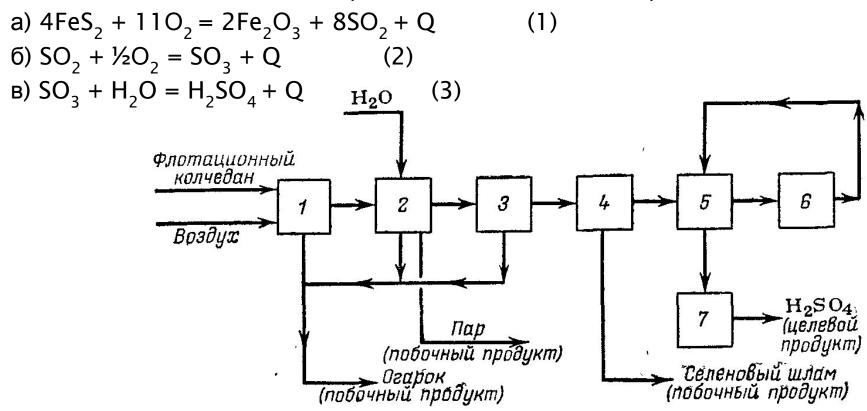


Рис. XI.3. Прииципиальная схема производства серной кислоты контактиым методом:

1—обжиг флотационного колчедана и получение обжигового газа; 2—охлаждение газа в котле-утилизаторе; 3—очистка газа от пыли; 4—промывка и осушка газа; 5—подогрев газа: 6—окисление сернистого ангидрида в серный на катализаторе; 7—абсорбция серного ангидрида и образование серной кислоты.

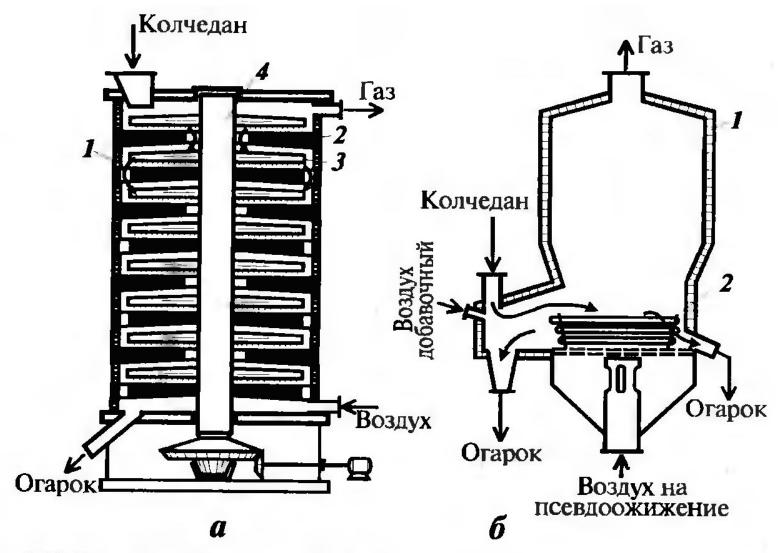


Рис. 5.25. Реакторы обжига колчедана:

a – полочный (1 – корпус, 2 – полки для колчедана, 3 – вращающиеся скребки, 4 – ось привода скребков); δ – печь кипящего слоя (1 – корпус, 2 – теплообменник). Стрелки внутри аппаратов – движение твердого колчедана в реакторах

Технологическая схема производства

Общая схема производства серной кислоты контактным методом из флотационного колчедана с осуществлением процесса окисления SO_2 на основе двойного контактирования показана на рис. XI.14.

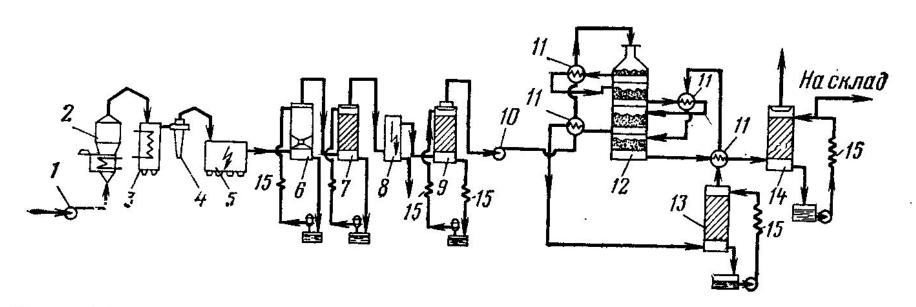


Рис. XI.14. Технологическая схема производства серной кислоты из флотационного колчедана:

1, 10—нагнетатели; 2—печь КС; 3—котел-утилизатор; 4—циклон; 5—сухой электрофильтр; 6, 7—1-я и 2-я промывные башни; 8—мокрый электрофильтр; 9—сушильная башня; 11—тепло-обменники; 12—контактный аппарат; 13, 14—моногндратные абсорберы; 15—холодильники кислоты.

Факторы характеризующие протекание процесса

Производительность единичного агрегата, т∙сут⁻¹ серной кислоты	
(100% H ₂ SO ₄)	1000
Температура газа, °С	
на выходе из печи КС	850
на входе	
в сухой электрофильтр	400
в сушильную баню	32
в 1-й слой контактной массы	420
на входе во 2-й слой контактной массы	450
на входе в 3-й слой	430
на входе в 4-й слой	420
на выходе из абсорбера	60
Концентрация SO, на входе в 1-й слой контактной массы, % (об.)	9
Степень превращения на выходе из	
1-го слоя контактной массы	0,6
2-го слоя контактной массы	0,85
3-го слоя контактной массы (после первой стадии контактирования)	0,90
на выходе из 4-го слоя	0,995
Разряжение перед нагнетателем	
Па	9 800
мм вод. ст.	1 000
Давление после нагнетателя	
Па	22 500
ММ ВОЛ СТ	2 300

Технико-экономические показатели

Основные технико-экономические показатели:

Степень превращения SO ₂ на катализаторе, %	96-99,5
Общее использование серы, %	85-86
Потери серы, %	5-6
Расход электроэнергии, кВт·ч·т ⁻¹	100-110
Расход воды, м ³ ⋅ т ⁻¹	50-60

Методы оптимизации производства

- Повышение единичной мощности агрегатов;
- 2. Повышение давления процесса;
- з. Замена воздуха, кислородом или воздухом, обогащенным кислородом.

Заключение

- В производстве H₂SO₄ соблюдены основные направления развития химической промышленности:
 - 1.Технология малоотходная переход сырья в целевой продукт достигает 99,9 %.
 - 2. Энергосберегающее, так как процесс обеспечивает сам свое энергосбережение.
- □ Эта химическая технология обладает рядом функций:
 - 1. Рациональное использование сырья и энергии.
 - 2. Масштабность и дешевизна.
- Поскольку процесс непрерывен, он обладает рядом достоинств:
 - 1.Большое количество продукта с 1 объема аппарата высокая интенсивность процесса.
 - 2. Исключение потерь тепла из за термодинамичности нагрев охлаждение.
 - 3. Легкость автоматизации.