Обратное **Z** - преобразование.

Цель: научиться восстанавливать оригинал по известному Z-изображению

Задача восстановления оригинала по известному изображению решается при помощи обратного Z-преобразования:

$$x(nT) = \frac{1}{2\pi i} \oint X(z)z^{n-1}dz$$

способы нахождения обратного zизображения:

- с использованием таблицы соответствий
- разложение на простые дроби
- на основании теоремы Коши о вычетах

Пример 1: дано Z-изображение

$$X(z) = 0.5z^{-1} + 0.2z^{-2} - 0.8z^{-4} + 0.1z^{-5}$$

Найти: дискретный сигнал.

т.к. Z – изображение представлено в виде суммы, то дискретный сигнал:

$$x(nT) = \{0; 0,5; 0,2; 0; -0,8; 0,1\}$$

Если Z-изображение дискретного сигнала представлено в виде дроби, то необходимо привести его к виду:

$$\mathbf{X}(\mathbf{z}) = \sum_{\mathbf{m}=0}^{\infty} \mathbf{X}_{\mathbf{m}} \cdot \mathbf{z}^{-\mathbf{m}}$$

- численный метод (деление полинома числителя X(z) на знаменатель)

Пример 2: дано Z-изображение

$$X(z) = \frac{5z^3 + 2z + 1}{z^3 + 1}$$

Найти: дискретный сигнал.

Решение: разделим полином числителя на полином знаменателя

тогда

$$X(z) = \frac{5z^{3} + 2z + 1}{z^{3} + 1} =$$

$$= 5 + 2z^{-2} - 4z^{-3} - 2z^{-5} + ...$$

$$x(nT) = \{5; 0; 2; -4; 0; -2...\}$$

использование теоремы о вычетах

если
$$X(z) = z \cdot \frac{W(z)}{V(z)} = z \cdot \sum_{k=0}^{Q} \frac{A_k}{z - z_k}$$

где z_k – полюс X(z)

$$\mathbf{A_k} = \lim_{\mathbf{z} \to \mathbf{z_k}} (\mathbf{z} - \mathbf{z_k}) \frac{\mathbf{W(z)}}{\mathbf{V(z)}}$$

тогда
$$\mathbf{x}(\mathbf{n}\mathbf{T}) = \sum_{k=0}^{\mathbf{Q}} \mathbf{A}_k (\mathbf{z}_k)^n$$

Пример 3: дано Z-изображение

$$\mathbf{X(z)} = \frac{\mathbf{z}^2 - 0.6\mathbf{z} + 0.08}{\mathbf{z}^2 - 0.8\mathbf{z} + 0.15}$$

Найти: дискретный сигнал.

Решение: приведем X(z) к виду

$$\mathbf{X(z)} = \mathbf{z} \cdot \frac{\mathbf{W(z)}}{\mathbf{V(z)}} = \mathbf{z} \cdot \frac{\mathbf{z}^2 - 0.6\mathbf{z} + 0.08}{\mathbf{z} \cdot \left(\mathbf{z}^2 - 0.8\mathbf{z} + 0.15\right)}$$

Найдем полюса X(z):

$$\mathbf{z} \cdot (\mathbf{z}^2 - 0.8\mathbf{z} + 0.15) = 0$$

 $\mathbf{z}_1 = 0; \ \mathbf{z}_2 = 0.5; \ \mathbf{z}_3 = 0.3$

тогда:

$$\mathbf{X}(\mathbf{z}) = \mathbf{z} \cdot \frac{\mathbf{z}^2 - 0.6\mathbf{z} + 0.08}{\mathbf{z} \cdot (\mathbf{z} - 0.5)(\mathbf{z} - 0.3)}$$

Найдем коэффициенты **A**_k:

$$\mathbf{A}_{1} = \lim_{\mathbf{z} \to 0} (\mathbf{z} - 0) \frac{\mathbf{z}^{2} - 0.6\mathbf{z} + 0.08}{\mathbf{z} \cdot (\mathbf{z} - 0.5)(\mathbf{z} - 0.3)} = \frac{0.08}{0.15} = 0.533$$

$$\mathbf{A}_{2} = \lim_{\mathbf{z} \to 0,5} (\mathbf{z} - 0.5) \frac{\mathbf{z}^{2} - 0.6\mathbf{z} + 0.08}{\mathbf{z} \cdot (\mathbf{z} - 0.5)(\mathbf{z} - 0.3)} = 0.5$$

$$=\frac{0,03}{0,1}=0,3$$

$$\mathbf{A}_{2} = \lim_{\mathbf{z} \to 0,3} (\mathbf{z} - 0,3) \frac{\mathbf{z}^{2} - 0,6\mathbf{z} + 0,08}{\mathbf{z} \cdot (\mathbf{z} - 0,5)(\mathbf{z} - 0,3)} = \frac{-0,01}{-0,06} = 0,167$$

тогда

$$X(z) = z \cdot \left(\frac{0,533}{z} + \frac{0,3}{z - 0,5} + \frac{0,16}{z - 0,3}\right) =$$

$$= 0.533 + \frac{0.3}{1 - 0.5 \cdot z^{-1}} + \frac{0.16}{1 - 0.3 \cdot z^{-1}}$$

$$X(z) = 0.533 + \frac{0.3}{1 - 0.5 \cdot z^{-1}} + \frac{0.16}{1 - 0.3 \cdot z^{-1}}$$

тогда дискретный сигнал

$$\mathbf{x(nT)} = 0.533 \cdot 0^{\mathbf{n}} + 0.3 \cdot (0.5)^{\mathbf{n}} + 0.16 \cdot (0.3)^{\mathbf{n}}$$

найдем первые три отчета ДС:

$$\mathbf{x}(0\mathbf{T}) = 0.533 \cdot 0^0 + 0.3 \cdot (0.5)^0 + 0.16 \cdot (0.3)^0 = 0.993$$

$$\mathbf{x(1T)} = 0.3 \cdot (0.5)^{1} + 0.16 \cdot (0.3)^{1} = 0.198$$

$$\mathbf{x(2T)} = 0.3 \cdot (0.5)^2 + 0.16 \cdot (0.3)^2 = 0.089$$

Практическое занятие

Задача 1

Дано Z-изображение, найти дискретный сигнал

Вариант	X(z)
1	$3+1z^{-1}+2z^{-2}+3z^{-3}$
2	$2+3z^{-1}+1z^{-2}+2z^{-3}$
3	$4+3z^{-1}+3z^{-2}+2z^{-3}$
4	$3+1z^{-1}+3z^{-2}+2z^{-3}$
5	$2+1z^{-1}+1z^{-2}+0z^{-3}$
6	$1+2z^{-1}+2z^{-2}+4z^{-3}$

Вариант	X(z)
7	$2+1z^{-1}+1z^{-2}+4z^{-3}$
8	$1+1z^{-1}+2z^{-2}+4z^{-3}$
9	$0 + 1z^{-1} + 2z^{-2} + 5z^{-3}$
10	$2 + 0z^{-1} + 1z^{-2} + 2z^{-3}$
11	$3+1z^{-1}+4z^{-2}+2z^{-3}$
12	$8 + 4z^{-1} + 3z^{-2} + 3z^{-3}$
13	$7 + 2z^{-1} + 3z^{-2} + 5z^{-3}$
14	$6+1z^{-1}+8z^{-2}+4z^{-3}$
15	$9+3z^{-1}+2z^{-2}+7z^{-3}$

Задача 2

Дано Z-изображение, найти дискретный сигнал двумя способами

Вариант	X(z)	Вариант	X(z)
1	$\frac{1+7z^{-1}+1z^{-2}}{1+4z^{-1}+3z^{-2}}$	4	$\frac{4+0z+1z^{-2}}{1+3z+2z^{-2}}$
2	$\frac{1+0z^{-1}+2z^{-2}}{1+4z^{-1}+3z^{-2}}$	5	$\frac{1+0z^{-1}+4z^{-2}}{1+4z^{-1}+3z^{-2}}$
3	$\frac{1+1z^{-1}+1z^{-2}}{1+4z^{-1}+3z^{-2}}$	6	$\frac{1+2z+0z^{-2}}{1+3z^{-1}+2z^{-2}}$

Вариант	X(z)	Вариант	X(z)
7	$\frac{0+1z^{-1}+0z^{-2}}{1+6z^{-1}+8z^{-2}}$	12	$\frac{4+0z^{-1}+2z^{-2}}{1+3z^{-1}+9z^{-2}}$
8	$\frac{0+2z^{-1}+1z^{-2}}{1+6z^{-1}+8z^{-2}}$	13	$\frac{7+2z^{-1}+5z^{-2}}{1+3z^{-1}+2z^{-2}}$
9	$\frac{2+1z^{-1}+0z^{-2}}{1+3z^{-1}+2z^{-2}}$	14	$\frac{1+8z^{-1}+3z^{-2}}{1+1z^{-1}+2z^{-2}}$
10	$\frac{0+4z^{-1}+5z^{-2}}{1+7z^{-1}+10z^{-2}}$	15	$\frac{3+0z^{-1}+7z^{-2}}{1+2z^{-1}+1z^{-2}}$
11	$\frac{2+5z^{-1}+3z^{-2}}{1+4z^{-1}+4z^{-2}}$		