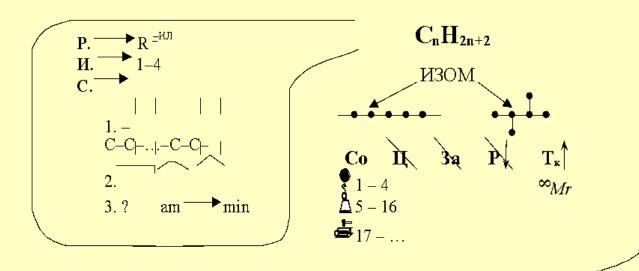
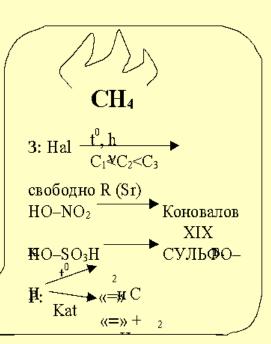

Классификация органических соединений

ВАЖНЕЙШИЕ ФУНКЦИОНАЛЬНЫЕ ГРУППЫ

Функциональная группа	Название класса	Общая формула класса
- F, - CI, - Br, - I (- HaI) галогены	Галогенпроизводные	R – HaI
- ОН гидроксильная	Спирты, фенолы	R-OH
. NH ₂ Амино-	Амины	$R - NH_2$
-и-м	Нитросоединения	R-NO2
Нитро- С = О карбонильная	Альде гиды	R-C H R1-C-R2
	Кетоны	R ₁ -C-R ₂ O
О - С \\ ОН карбоксильная	Карбоновые кислоты	R-C N OH
О 	Сульфокислоты	R − SO₃H


названия важнейших радикалов


Радикал	Название
CH ₃ -	Метки
CH ₃ - CH ₂ -	Этил
CH3 - CH2 - CH2 -	Н – пропил
CH3 - CH - CH3	Изопропип
CH ₂ =	Метилен
$CH_2 = CH -$	Винип
	Фе нил
O	Бензил
(O)(O)	Нафтип
CH ₃ - C	Аце тип
CH ₃ - O -	Метокси

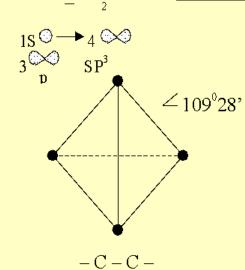
ОСНОВНЫЕ КЛАССЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И ИХ СВОЙСТВА

		T	Углеводороды		8	
Класс	Алканы					
	(предельные)	алкены (этиленовые)	алкины (ацетиленовые)	алкадиены (диеновые)	арены (ароматические)	
Общая формула	C _n H _{2n+2}	C _n H _{2n}	C_nH_{2n-2}	C_nH_{2n+2}	C _n H _{2n-6}	
Тип связи	-C-C-	- C = C -	- C= C -	- C = C C = C -	3	
Окончание (суффикс)	- aH	- ен	- ин	- диен	3	
Основные реакции	1. Замещение водорода: а) на галогены б) на нитрогруппы (реакция Коновалова)	Присоединение: а) водорода б) галогенов в) галогеноводородо г) воды (для ацетил 2.Оки сление в прис 3. Полимеризация	еновых — реакция Кучеј	рова)	1. Замещение водорода: а) на галоген б) на нитрогруппу 2.Присоединение: а) водорода б) галогена 3. Оки сление гомологов бензол	
Класс	Спирты	Альдегиды	Кетоны	Кар боовые кислоты	Амины	
Общая формула	R - OH	R-C H	R - C	O R – C OH	R –NH ₂	

Окончание (суффикс)	- 0Л	- аль	- OH	- квао	- амин
Основные реакции	1.Замещение: а) водорода гидроксипа на щелочной мтапл б) всего гидроксила на гапоген (с РСІ ₁) в) гидроксила на аминогруппу(с NН ₃) 2. Окисление: а) первичных спиртов (в апьдегиды) б) вторичных спиртов (в кетоны) 3. Образование эфиров: а) простых б) сложных 4. Взаимодействие многоатомных спиртов с Си(ОН) ₁ 5. Реакция фенолов с NаОН	6) HCN прис в) NaHSO; доро г) спирта част	качественные реакции на альдегиды ода на галоген сопродувсегда соединяется вода, а остальная роду	 Диссоциация Замещение: водорода карбоксила на метапп (образование солей) гидроксила карбоксила на галоген (с PCI₅) гидроксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила карбоксила	1. Сводой (образование гидроксидов) 2. С кислотами (образование солей)

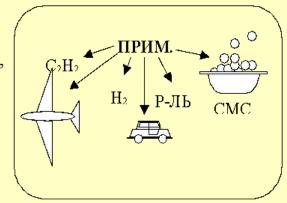
пол.

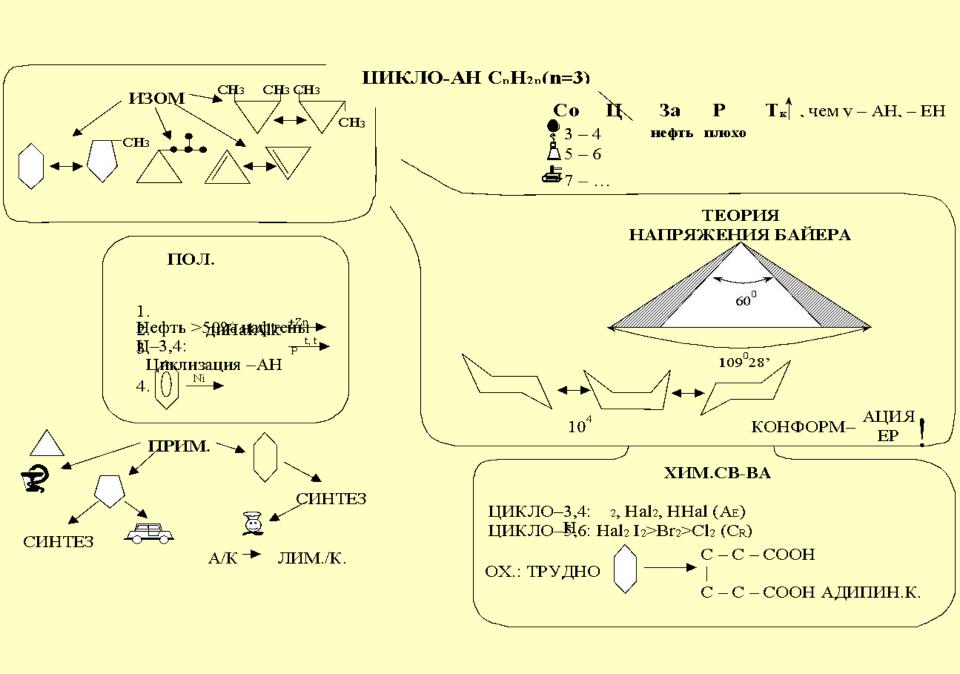
1. нефть (до 97%)

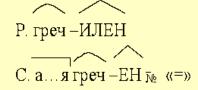

<u>Б</u>:аз,

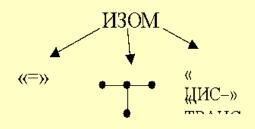
Р.Вюрца 2R Hal+2Na

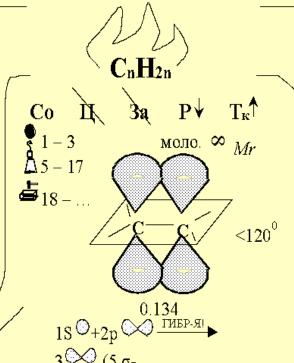
3.Лаб.: R C ONa +NaO H


4.Zm + AH


5.nCO+(2n+1)H₂ -AH

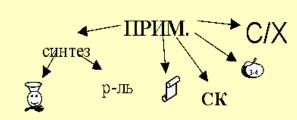

0,154 HM

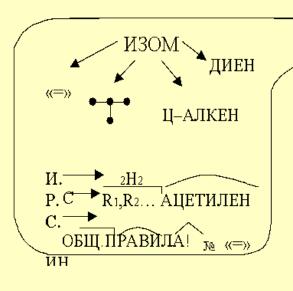

ГОМОЛОГИ


HOM.

ПОЛ.

ЛАБ. из С2Н5ОН Т/Б!

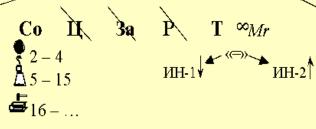

((=)) σ π


хим.св.

H2 Hal2 Кач.р.! H2O HHal

р.Вагнера
 «=» р.КМпО4
 – ЕН Огись

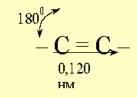
полья МОНО - МЕР

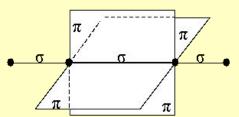


пол.

Вёлер, 1862:

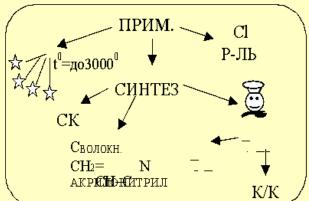
C_nH_{2n-2}

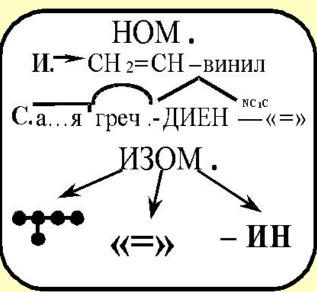


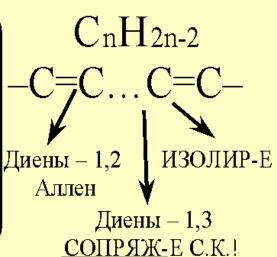

CTPOEH.

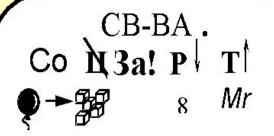
$$1S \bigcirc +1 \bigcirc p \xrightarrow{\Gamma-\Re} 2 \bigcirc SP-\Gamma U BP$$

$$2 \bigcirc p$$


$$\pi \quad p :$$







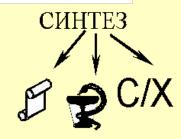
C_2H_2

П.: H₂, Hal₂, HHal, H₂O

1,2 - ПРИСОЕД-Е!

пол.

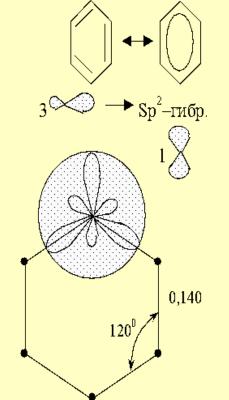
1. Лебедев С.В. 1910г. ЭТАНОЛ <u>Al2O3</u> – ДИЕН


2.-АН,-ЕН крекинг

3. ПРОПЕН t,P,Kat ИЗОПРЕН CH2= C-CH=CH2 CH3 KAУЧУК!

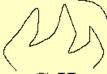
ЭФФЕКТ

СОПРЯЖЕНИЯ "=" – 0,136 нм "–" – 0,146 нм SP²-гибр ПОЛИМЕР-Я!


ИЗОМ

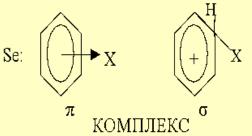
ПОЛОЖЕНИЯ! 1,2 – Q,\$TO (–О) MÆTA (–М) ЙАРФа(–П)nin

C_nH_{2n-6}


Со II, За Р Т_{к_6}H₆+80⁰
В № В ! плохо ∞_{Mr}

Кекуле 1865г.

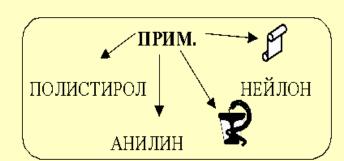
АРОМАТИЧ-ТЬ!

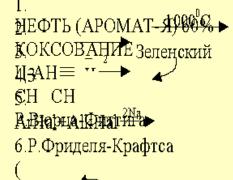

6

X.CB-BA

 C_6H_6

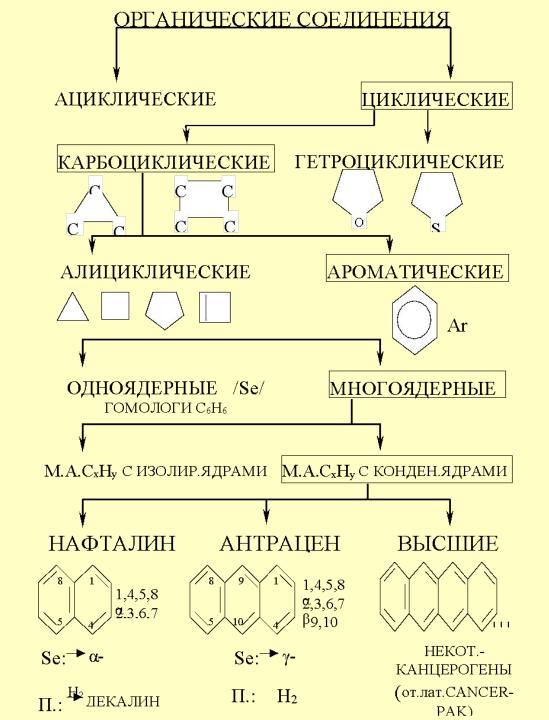
3: I TPABOOPINEHITAUNIOH,-NH3 IPPUNA (-M): -COOH,-SO3H,-CN,-NO2




HNO₃, H₂SO₄, Hal₂, RHal

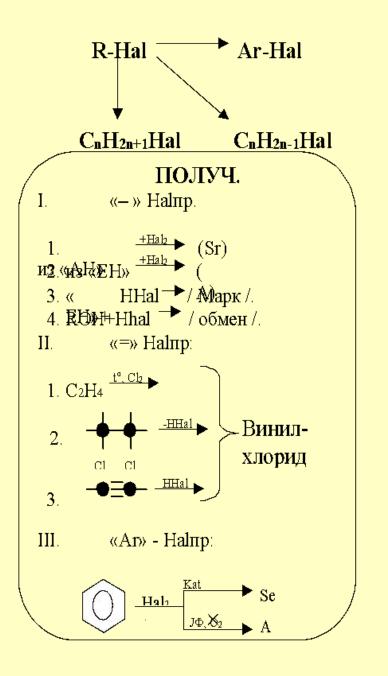
■: 2, Hal₂

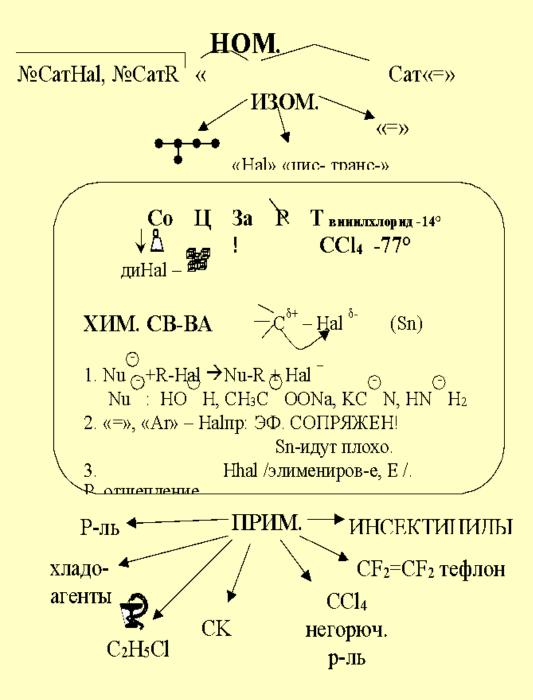
H

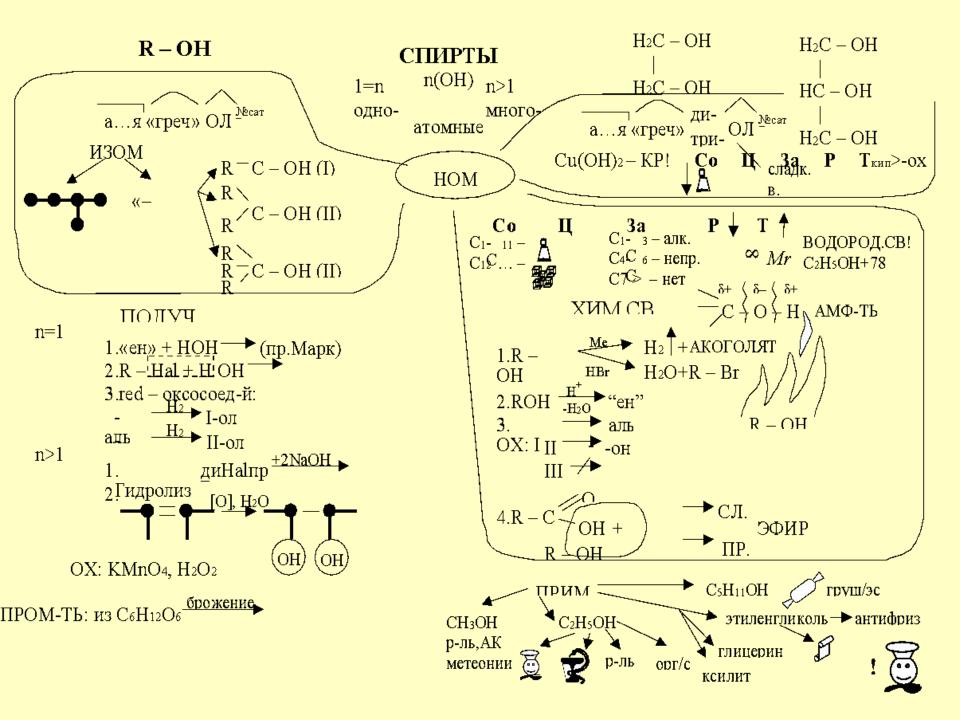

ох:|()| **/→**, гомологи с 6H6

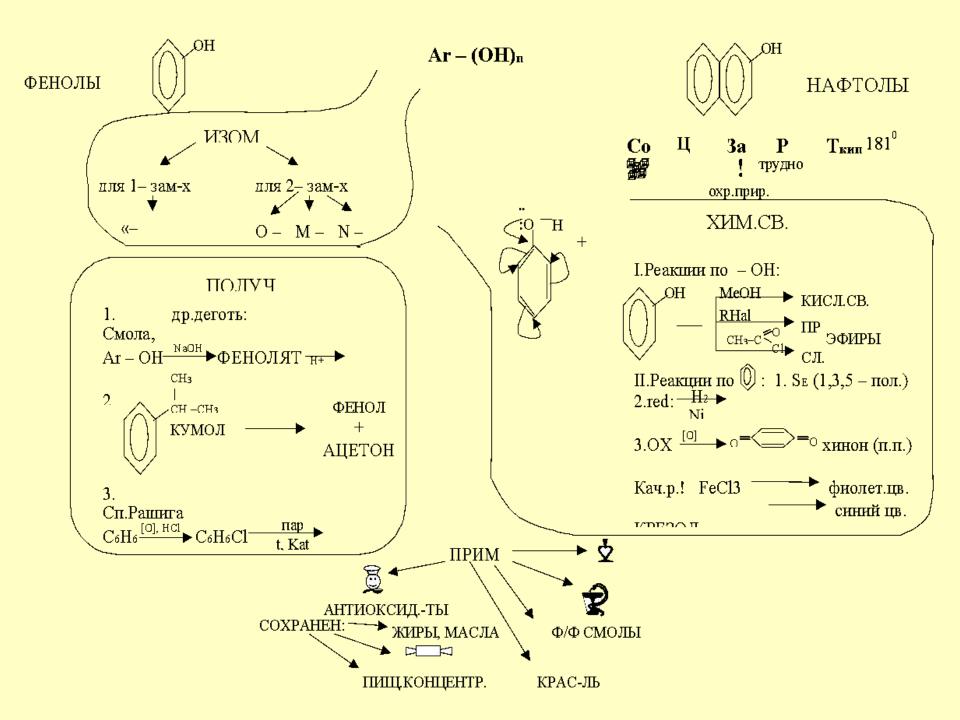
ПОЛ

АЛКИЯМРОВАНИЕ) +(All Cl ^{Kat}→

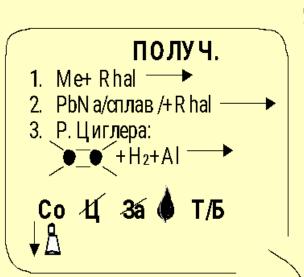

Обобщающий ОК: «Углеводороды»


							тиеводо	ооды//	(СВОЙС	CTBA		
	Общ. формула	Строение	Гиб- рид-я	Длина С-С	Вал. <	Вид связи	Особ.в название		n	п	Полим-я	Окис	пение
				НМ		С-С		Горение	3.	Π.	TIOIIVIM-A	O ₂	KMnO ₂
AJIKAHBI	C _n H _{2n+2}		Sp ³	0.154	109 ⁰ 28'	σ	_	+	+	_	_	+	-
AJIKEHBI	C _n H _{2n}		Sp ²	0.134	120	σиπ	_	+	-	+	+	+	+
АЛКИНЫ	C _n H _{2n-2}		Sp	0.12	180 ⁰	σи 2π	\ \ \ \	+	+ Me	+	+	+	+
ДИЕНЫ	C _n H _{2n-2}		Sp ²	0.146 0.136	1200	σиπ и σиπ	-	+	_	+	+	+	+
APEHBI	C _n H _{2n-6}		Sp ²	0.140	1200	6 д и 6 д	БЕНЗОЛ	+	+ Se	+ ІФ	— гомол.+	+ t, Kat	гомол С6Н6 +


ВАЖНЕЙШИЕ ПРЕДСТАВИТЕЛИ ИЗУЧАЕМЫХ КЛАССОВ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ


Назв	ание	Формула
тривиальное	По номенклатуре ию пак	
Предельные	Алканы	C_nH_{2n+2}
Метан	Метан	CH ₄
Этан	Этан	$CH_3 - CH_3$
Пропан	Пропан	CH ₃ -CH ₂ -CH ₃
буган	Бутан	$CH_3 - CH_2 - CH_2 - CH_3$
изобутан	2-метилиропан	CH ₃ -CH-CH ₃ CH ₃
Этнленовые	Алкены	C_nH_{2n}
Эгипен	Этен	$CH_2 = CH_2$
Пропилен	Пропен	$CH_2 = CH - CH_3$
Бугилен	бутен-1	$CH_2 = CH - CH_2 - CH_3$
Псевдобугилен	Бутен-2	$CH_3 - CH = CH - CH_3$
Ацетиленовые		C_n H_{2n-2}
Аце типе н	Алкины Этин	CH≡CH
Метипацетилен	Пропин	CH≡C-CH3
Этипацетипен	Бутин-1	$CH = C - CH_2 - CH_3$
Диметилацетилен	Бутин-2	$CH_3 - C \equiv C - CH_3$

Назв		Формуль
тривиальное	по номенклатуре ИЮПАК	
Диеновые	Алкаднены	C_nH_{2n-2}
дивинил	бутадиен-1,3	$CH_2 = CH - CH = CH_2$
изопрен	2-метил- бутадиен-1,3	CH ₂ = C - CH = CH ₂ CH ₃
Циклопар афины	Циклоалканы	C_nH_{2n}
Цикло пропан	Циклопропан	CH, H ₂ C/_CH ₂
Циклобуган	Циклобутан	H ₂ C — CH ₂ H ₂ C — CH ₂
Ар оматические	Арены	$\mathbf{C}_{\mathbf{n}}\mathbf{H}_{2\mathbf{n}}$
бензол	бензол	
топуол	метилбензол	CH ₃
кс ипол (o-, м-, n-)	диметипбензол (1,2-; 1,3-; 1,4-)	CH ₃



СПИРТЫ И ФЕНОЛЫ

Hа	азвание	Формула
тривиальное	По номенклатуре ИЮПАК	50 903 50
метиповый	метанол	СН₃ОН
винный спирт (этиповый)	этанол	CH ₃ - CH ₂ - OH
пропиловый	пропанол - 1	CH ₃ - CH ₂ - CH ₂ - OH
изопропиповый	пропанол – 2	CH3 - CH - CH3
		о́н
бугиповый	бутанол – 1	CH ₃ -CH ₂ -CH ₂ -CH ₂ - OH
аппиповый	пропенол	$CH_2 = CH - CH_2 - OH$
этиле нгли коль	этандиол – 1,2	CH,-CH, OH OH
глицерин	пропантриол – 1,2,3	сн. – сн – сн. он он он
Фенол	Оксибензол	OH OH
Крезол (о-, м-, n-)	Метилоксибензол (1,2-; 1,3; 1,4-)	OH OH OH CH ₃ OH CH ₃ OH CH ₅

КРЕМНИЙ.-ОРГ.

ЭЛЕМЕНТ. ОРГ. СОЕДИНЕНИЯ

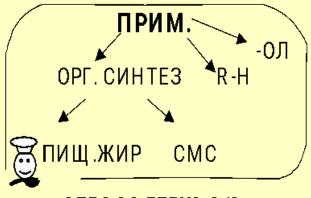
ЭЛЕМЕНТЫ П.С.Д.И.М.+

OPГАНОГЕНЫ Me(R)n

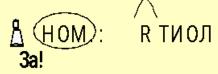
nR+назв.Ме

$$X \text{ MM. CB-BA.}$$

 $C^{\delta_-} - \text{Me}^{\delta_+}$

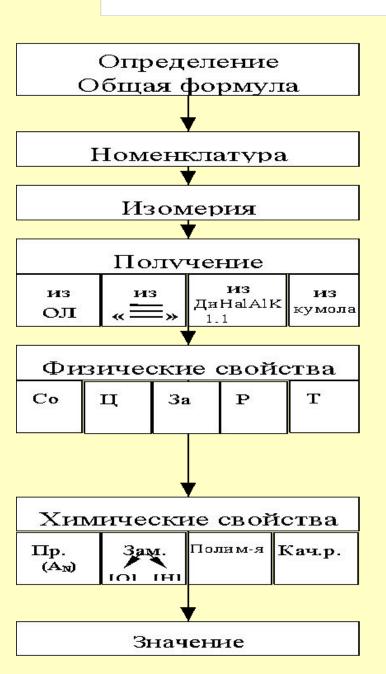

3.: обр-е R-Н:

$$HO[H^{\delta_+} + R^{\delta_-}]MeHal$$


-ол, к/к, NН₃. П.: к С=О, С=N...

$$C^{\delta_{+}} = O^{\delta_{-}} + R^{\delta_{-}} - Me^{\delta_{+}} - Ha$$

формалин, укс. к., ацетон.



СЕРОСОДЕРЖ. О/С.

С.-П. «Оксосоединения»

- В чем отличие общей формулы альдегидов от кетонов?
- 2. Почему альдегиды и кетоны можно объеденить в класс «Оксосоединения»?

Чем отличается номенклатура альдегидов от номенклатуры кетонов?

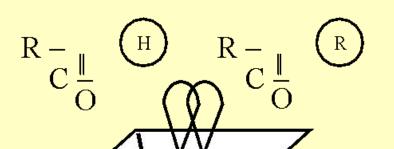
Каковы особености изомерии оксосоединений?

Назовите основные реакции получения

- Альдегидов
- Кетонов

Каковы особенности физических свойств следующих оксосоединений:

$$H=C \stackrel{\bigcirc}{\longleftarrow} , CH_3=C \stackrel{\bigcirc}{\longleftarrow} , CH_2=CH=C \stackrel{\bigcirc}{\longleftarrow} ,$$
 $CH_3=C \stackrel{\bigcirc}{\longleftarrow} CH_3$


- Какие продукты образуются в реакции присоединения H₂ к ацетону, этаналю?
- Приведите примеры реакций: замещения, полимеризации. Назовите полученные продукты.
- 3. Каковы качественные реакции: альдегидов, кетонов?

Приведите примеры использования оксосоединений в различных отраслях промышленности (в т.ч. и в пишевой!)

АЛЬДЕГИДЫ И КЕТОНЫ

0.121

пол.:

<120°

- ПОТ АЛЬ
КУМОЛ ОН
ОН
— НОН
р. учерова
ИН
К
диНаІАІК 1,1- НОН — АЛЬ
ОН
ОН
R- С На

Синтез Фриделя-Крафтса

 $P T_{K} <$ 3a ПРИМ ОРГ. СИНТЕЗ К.АНАЛИЗ

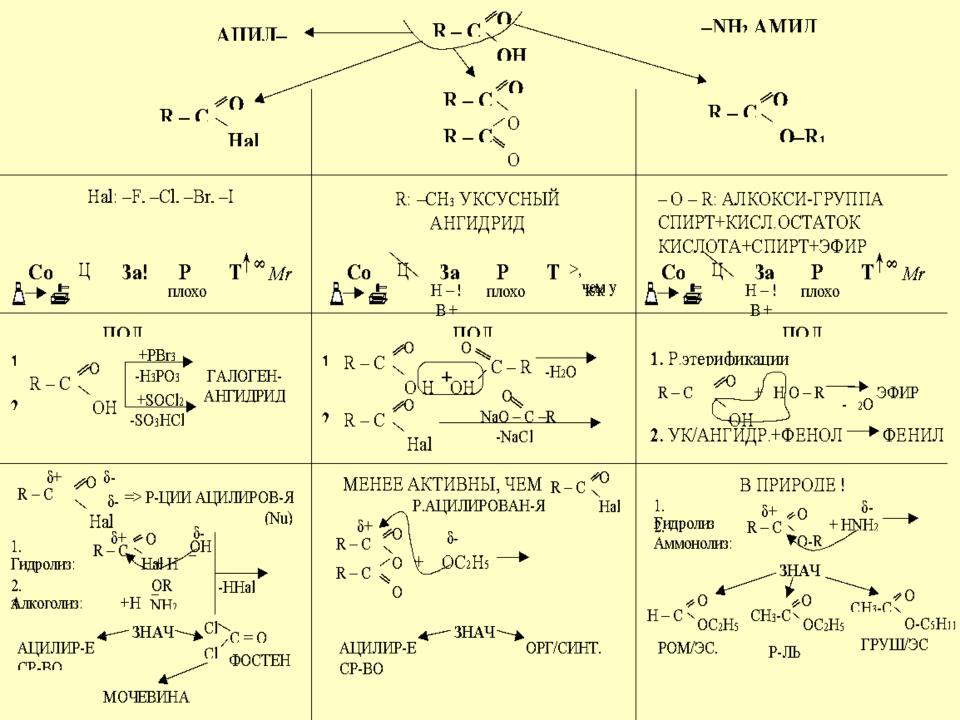
ХИМ.СВ.:

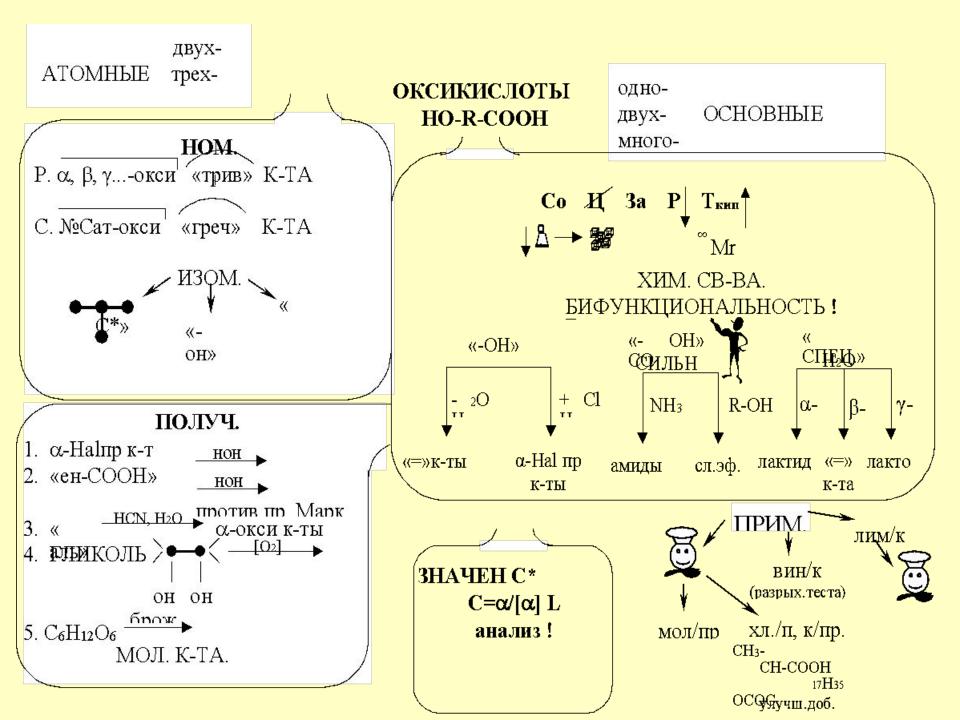
М-ЗМ: An П. Н₂, NaSO₃, ROH… Ацеталь

ПОЛ-Я:Ф.-Ф.СМОЛЫ *М* ₁₀₀₀ РИЗОЛ

АЛЬДЕГИДЫ И КЕТОНЫ

Н	азвание	Формула	
тривиальное	по номенклатуре ИЮПАК	2072 * 197 5 20750	
муравьиный апьдегид	Метаналь	H-C \	
укс ус ный альде гид	Этаналь	CH _i - C	
диметилке тон (аще тон)	пропанон	CH₃-C-CH₃ O	
акролеин	пропеналь	$CH_2 = CH - C$	
бензойный альдегид (бензальдегид)		O H	


КАРБОНОВЫЕ КИСЛОТЫ


	C _n H _{2n+1} COOH	C _n H _{2n-1} COOH	(CH ₂) _n -(COOH) _n
ТРИВ-Я СИСТЕМ-Я	МУРАВЬИНАЯ, УКСУСНАЯ, МАСЛЯНАЯ, ВАЛЕРИАНОВАЯ ая «греч» овая к-та	АКРИЛОВАЯ, КРОТОНОВАЯ(С4) ОЛЕИНОВАЯ(С18). $N_{\text{PH}} N_{\text{N},\mathbb{C}^{*}}$ овяя $N_{\text{K-T9}}$	ЩАВЕЛЕВАЯ, ЯНТАРНАЯ, АДИПИНОВАЯ диовая к-та
ФИЗ.СВ-ВА	Р _{хор.} Т _{кип} 1-9 С _{1- 4} - резк. С ₄ С з - непр. С ₈ С Мг	Т _{кип} ↑ НЙЗШ — Г хор С₃+142° высш—нет нет ∞ Mr	P _{xop} T _{nn} C ₂ +190°
получен.	1.—ол [O]	1. Hal пр к/к —HOH 2. OH пр к/к —HOH 3. Hal пр к/к — IOI	1Диол
ХИМ.СВ-ВА	1.R − C О в М/О обр. солей 2. Этириф-я! + Вгз 3. Р.Зелинского: к/ж ОН к/к ОН к/к	С = С – СООН +HOH +HHal +HNH, Против.прав.марковн!	ЩАВ.К-ТА — 101 — 100 м/к+СО+ 101 — 101 — 100+ 100 м/к+СО+ 100 — 100 м/к+СО+ 1
ПРИМЕН.	HCOO	сорбинов С ₆ = 2,4 линолевая/к НЕЗАМ.Ж.К. антисепт.! олеиновая/к!	щавельная/к СНЗАНИНОВОНО2 (, к) СН2(2 Лимонная/к!

КАРБОНОВЫЕ КИСЛОТЫ

Ha	звание	Формула
тривиальнео	по номенклатуре ИЮПАК	10.00 to 10.00 to 10.00 to 10.00 to
муравьиная	метановая	H-COOH
уксусная	этановая	CH ₃ – COOH
пропионовая	пропановая	$CH_3 - CH_2 - COOH$
масляная	бутановая	$CH_3 - CH_2 - CH_2 - COOH$
кваонитимацип	гексадекановая	$C_{15}H_{31}COOH$
маргариновая	гептадекано ва я	C1.H33COOH
стеариновая	октадекановая	C ₁₇ H ₃₅ COOH
акриповая	пропеновая	$CH_2 = CH - COOH$
метакриповая	2-метилиропеновая	$CH_2 = C - COOH$
55	500	CH ₃
квасниецс	октадецен-9-овая	C ₁₇ H ₃₃ COOH
ква эпонип		$C_{17}H_{31}COOH$
кваон эпопип		C ₁₇ H ₃₉ COOH
		соон
Бензойная	бензолкарбоновая	

Ha	звание	Формула
тривиальнео	по номенклатуре ИЮПАК	20 KUN 1.5% (1906-1886)
фталевая (о-) изофталевая (м-) терефталевая (n-)	бензол- дикарбоновая (-1,2; -1,3; -1,4)	соон соон соон соон
щавеливая	тваононднате	HOOC - COOH
жало новая	пропандиовая	HOOC - CH2 - COOH
янтарная	бутандиовая	HOOC - CH2 - CH2 - COOH
мале ино ва я	цис-бутен-2-диовая	HOOC COOH
фумаровая	транс-буген-2- диовая	HOOC COOH

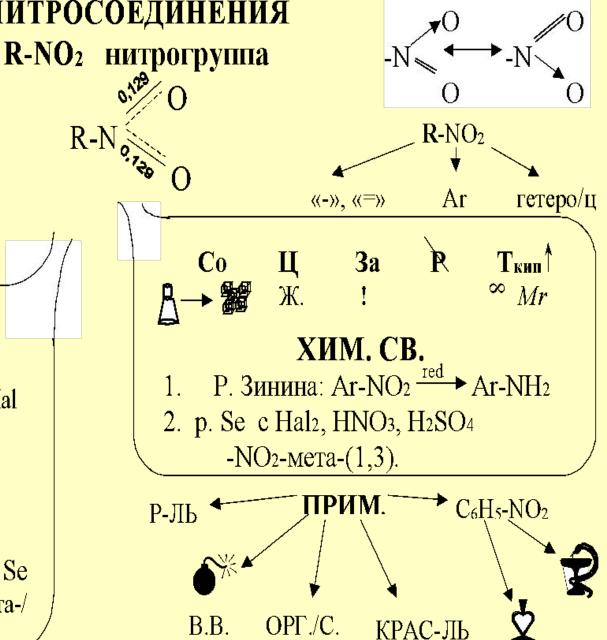
ОКСИКИСЛОТЫ

азвание	Формула
по номенклатуре ИЮПАК	3000 Eustin (1885) Eustin (1886)
оксиэтановая	$HO-CH_2-COOH$
2-оксипропановая	CH₃ - CHOH - COOH
2-оксибугандиовая	HOOC - CHOH - CH2 - COOH
1,2- диоксиб угандиовая	HOOC-CH-CH-COOH OH OH
2-оксипропан- трикарбоновая- 1,2,3	OH HOOC = CH2 - COOH COOH
2-оксибензол- карбоновая	он / соон
	по номенклатуре ИЮПАК оксиэтановая 2-оксипропановая 1,2- диоксиб угандиовая 2-оксипропантрикарбоновая 1,2,3

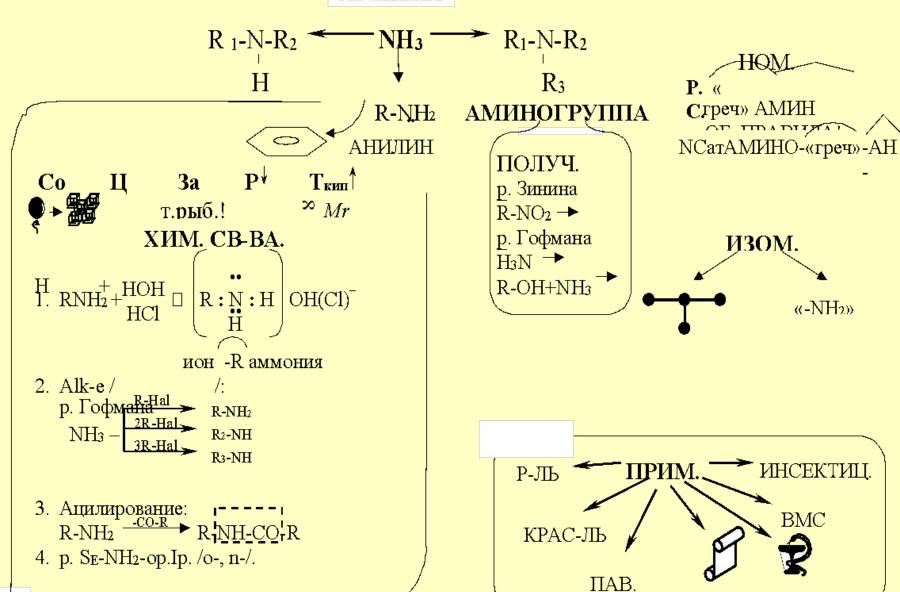
АЛЬДЕГИДО- И КЕТОКИСЛОТЫ

Название		Формула
тривиальнео	по номенклатуре ИЮПАК	SUCK EATHER SECURITIES.
Глиоксалевая	оксоэтановая	O \\ C-COOH H
пировиноградная	2-оксопропановая	CH3 - C - COOH O
аце тоукс усная	3-оксобутановая	CH ₃ -C-CH ₂ -COOH O

нитросоединения HOM. Об Правила! NCат нитро- «греч» R-No.720 получ. Р. обмена: R-Hal MeNO₂ → R-NO₂+MeHal Нитрование: - анSR


Ar Se

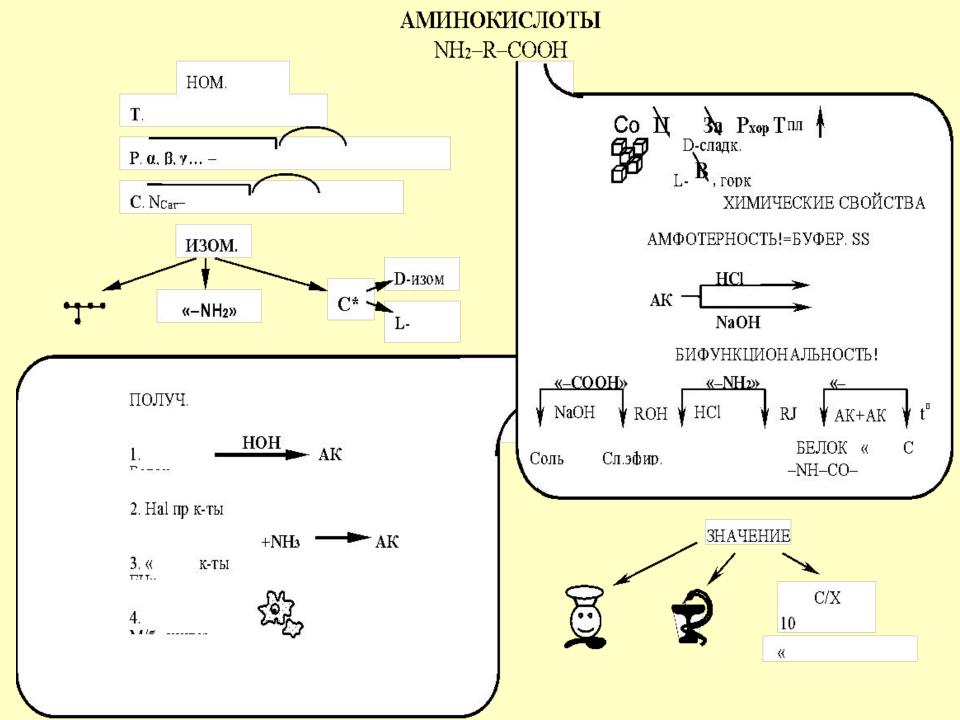
-NO₂ –ор. Пр./мета-/


 $HO-NO_2 \rightarrow HO.+.NO_2$

HO.+RH→ R.+...

 $R.+.NO_2 \rightarrow R-NO_2$

АМИНЫ

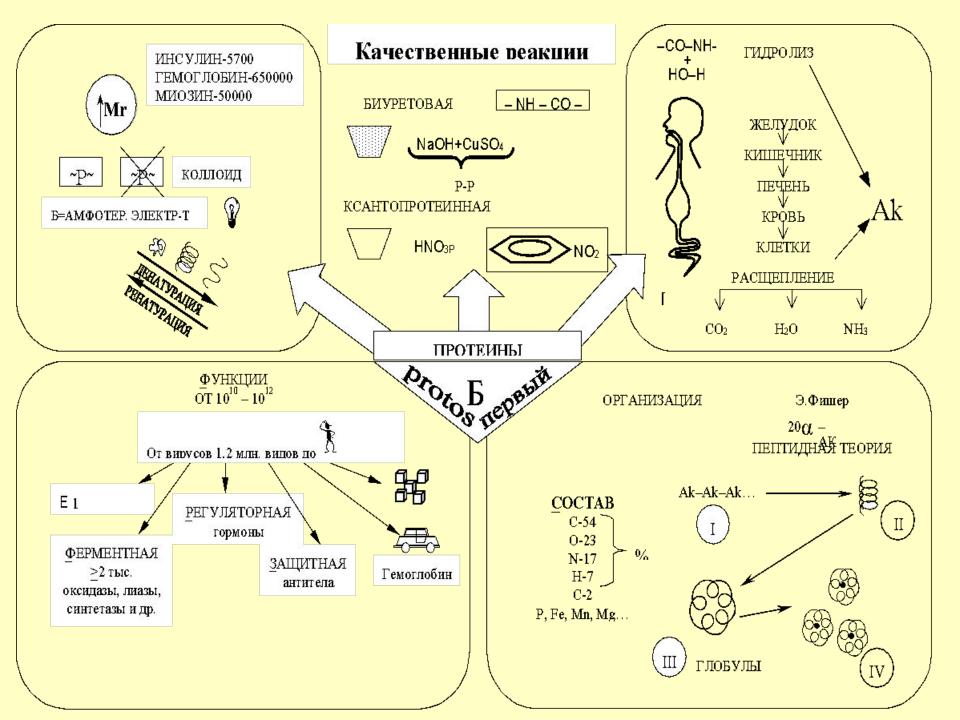


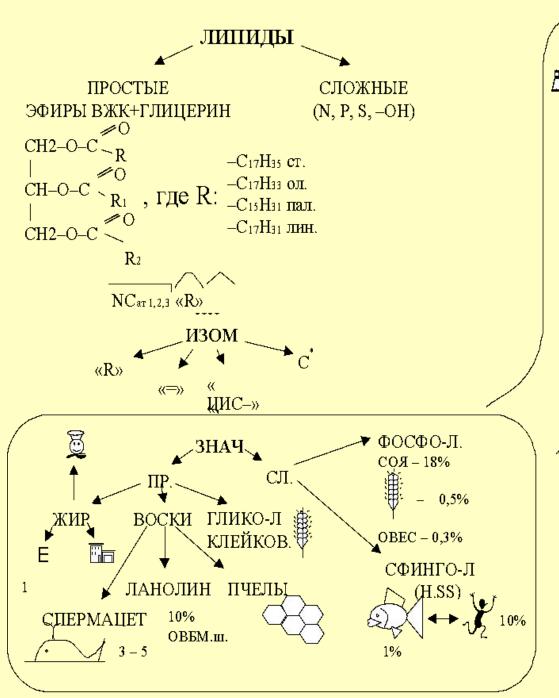
5. R-NH₂

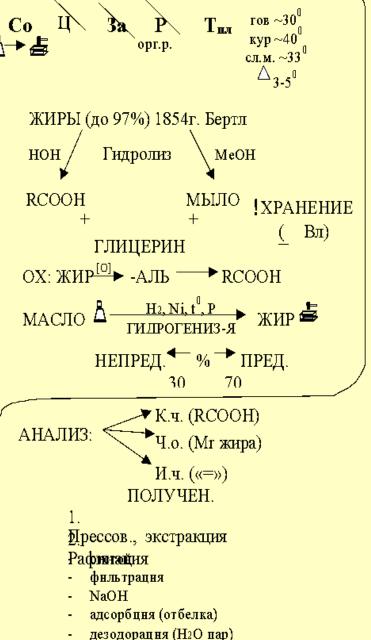
► N₂ +CO₂ +H₂O

АМИНЫ, АМИНОСПИРТЫ


Название	
по номенклатуре ИЮПАК	** 305.00.0T-00150000000
Аминометан	CH ₃ - NH ₂
	(CH ₃) ₂ NH
	(CH₃)₃N
1,4-диаминобутан	$NH_2 - (CH_2)_4 - NH_2$
1,5-диаминиентан	$NH_2 - (CH_2)_5 - NH_2$
1,6-диаминогексан	$NH_2 - (CH_2)_4 - NH_2$
2-аминоэтанол-1	NH2 - CH2CH2OH
	NH ₂
аминобензоп	
	по номенклатуре ИЮПАК Аминометан 1,4-диаминобутан 1,5-диаминоентан 1,6-диаминогексан 2-аминоэтанол-1




АМИНОКИСЛОТЫ


Название		Формула
тривиальное	по номенклатуре ИЮПАК	
плицин	кваоньтеонимь	NH2CH2COOH
аланин	2-аминопропановая	CH3CH(NH2)COOH
валин	2-амино-3— метилбутановая	(CH ₃) ₂ CHCH(NH ₂)COOH
лейцин	2-амино-4-метил- пентановая	(CH ₃) ₂ CHCH ₂ CH(NH ₂)COOH
аспарагиновая	2-аминобутандиовая	НООССН2СН(ИН2)СООН
ппутаминовая	2-аминопентандиовая	HOOC(CH2)2CH(NH2)COOH
лизин	2,6-диаминогексановая	NH2(CH2)4CH(NH2)COOH
серин	2-амино-3- оксипропановая	HOCH2CH(NH2)COOH
цистеин	2-амино-3- тиопропановая	HS - CH2CH(NH2)COOH
фенипаланин	2-амино-3- фениппропановая	C,H; - CH;CH(NH;)COOH
тирозин		HO-C4H4-CH2CH(NH2)COOH
триптофан		CH ₂ -CH-COOF

АМИНОКИСЛОТЫ NO2-R-COOH HOM. T. N 3a R T™ Co Р. 1. 2. 3-окси «ГРЕЧ» K-TA ХИМИЧЕСКИЕ СВОЙСТВА С. а, в, у-окси «ГРЕЧ» К-ТА АМФОТЕРНОСТЬ!=БУФЕР. SS изом. HOH AК «-СООН» NaOH БИФУНКШИОНАЛЬНОСТЬ! «-COOH» «-NH₂» получ. HC1 NaOH ¥ ROH RJ HOH AK+AK...« COOH» 1. Липиды Пр.эфир. Соль 2. Hal пр к-ты ЗНАЧЕНИЕ +HOH — - АК 3. « к-ты TITTE ТЯЖ.ПРОМ. 4. Орг. синтез {{

Обобшающий ОК Классы Общая Особен. в Особен. в Особености

Оδ-

O - R

3 к/к+три-ол

0

 $C_nH_{2n+1}COOH$

C_nH_{2n-1}COOH

R - C

R-C

CH2-O-COR

CH-O-COR

CH2-O-COR

Предельные

к/к

Непредельн.

к/к

Галоген-

ангилрилы

Сложные

жиры

Жиры

орг. соед-й	формула	строении	названии	получения	реакции
Альдегиды	$R-C \stackrel{^{\circ}}{\underset{H}{\stackrel{\circ}{\sim}}}$	δ+Oδ- - C	_	из I-ол С2H2	$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$
Кетоны	R−Ç−R	-ç ^{δ±} οδ-	_	из II-ол	Cu(OH) ₂ CuO

-овая к-та

-ЕНис-овая

к-та

К/к+-ол эфир

NC 1,2,3

ИΠ

-ИН

АЦИЛ+Hal-

из RCOOMe

Hal- no RCOOH

этерификация

гидрогенизация

 OH_{-}

из RCO C

Основные хим.

м/о. лакмус

Na₂CO₃ → CO₂ ↑

По Втэ (воля)

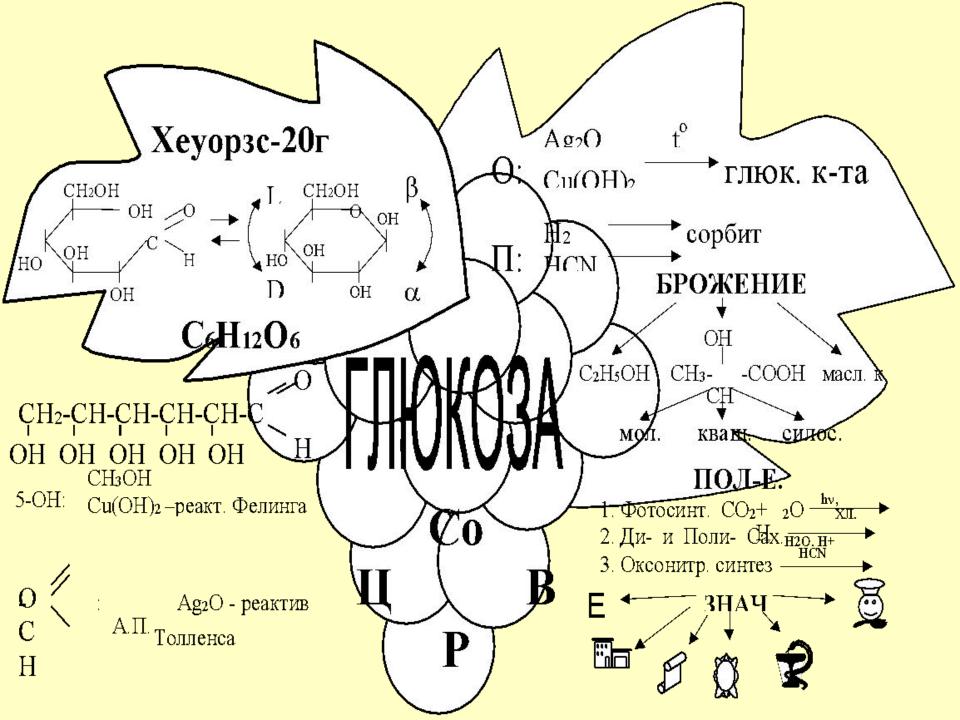
гилролиз,-

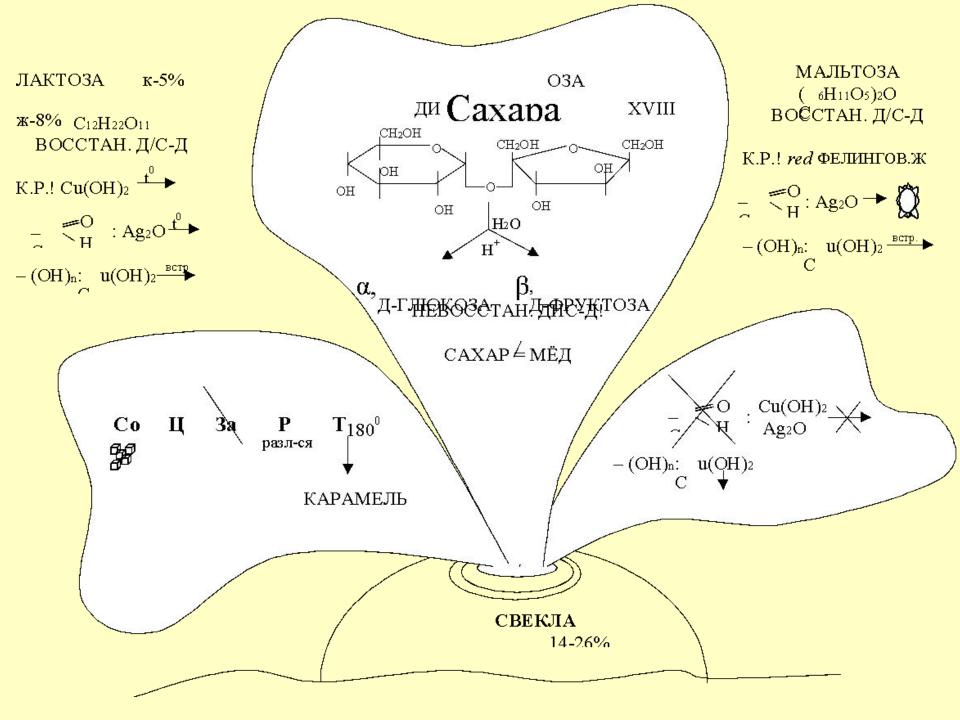
NaOH

Ox KMnO4(Rona)

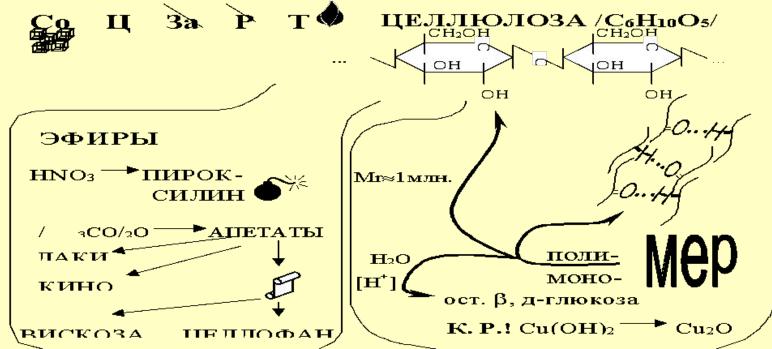
Ацилирование!

HOH, HOR, NH2H


Ацилирование

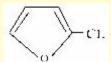

HOH, NH2H

черн. цв

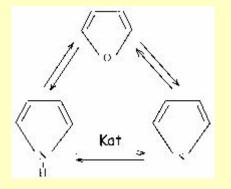

тобесцв.

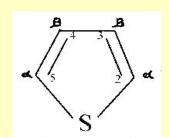
хранение

УГЛЕВОДЫ

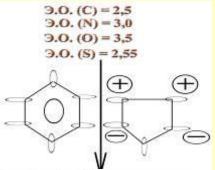

Название		Формула
тривиальнео	по номенклатуре ИЮПАК	
Моносахариды (монозы) рибоза	H HOH HOH OH OH CH2OH	CH2OH OH H H OH OH
		β -D-рибофураноза
дезоксирибоза	H H H H OH OH CH2OH	СН₁ОН ОН Н Н Н Н ОН Н 2-де эокс и-β-D-рибофураноза
глюкоза	H HOH HOHOH HOHOH	CH:OH H OH H OH OH OH
		λ-D-глюко пираноза

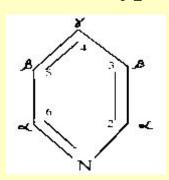
Название		Формула	
тривиальнео	по номенкпатуре ИЮПАК		
Фруктоза	CH ₂ OH C = O HO HOH OH OH CH ₂ OH	СН ₂ ОН ОН Н Н СН ₂ ОН ОН Н В-D-фруктофунораноза	
Дисахариды (биозы) мальтоза (солодовый сахар)	Н ОН Н А-D-глюкопираноза +	СН:ОН Н ОН ОН Н Н ОН Н ОН - A-D-глюко пираноза, гликозная связь)	
лактоза (молочный сахар)	СН2ОН НО О О ОН Н Н Н ОН В-D-галактопираноза + 2 В - 1,4 – гликозид – глик	Н ОН -D —пиомопираноза,	


Название		Формула	
тривиальнео	по номенклатуре ИЮПАК		
сахароза (тростниковый, свекловичный сахар)	CH ₂ OH H OH H O. HO H	CH2OH H H OH CH2OH OH H	
Полисахариды	(λ-1-β-2 ⊣ликозид-гл	100	
(полнозы) крахмап	H OH H	CH ₂ OH H OH H O- N OH OH	
Пелинопозя	CH ₂ OH H O H OH H OH OH	CH ₂ OH H O OH H O H OH	

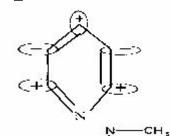

Гетероциклические соединения

Номенклатура:


Получение:

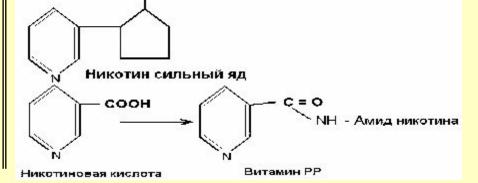


Строение:



Номенклатура:

Строение:



Получение:

2CH = CH + HCN → пиридии

Хим. Свойства:

3.A:
$$+3H_{2}$$

ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ

Ha	звание		
тривиальное	по номенклатуре ИЮПАК	Формула	
фуран	фуран		
тиофен	тио фен		
пиррол	пиррол	I H	
подни	исции	N H	
гетероауксин	2-(3-индолип) — этановая кислота	CH2-COOH	
пиридин	пиридин		
пиримидин	пиримидин		
пурин	пурин	N N N	
Ни ко тин		CH ₃	

КАЧЕСТВЕННЫЕ РЕАКЦИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

21.7.2.2.0		
Соединение	Реактив	Наблюдаемая реакция
Алканы	Пламя	Обычно определяют путем исключения Низшие алканы горят голубоватым пламенем
Алкены С=С	 Бромная вода р-р КмпО₄ Горение 	Обесцвечивание раствора Обесцвечивание раствора, выпадение бурого осадка MnO_2 Горят слегка желтоватым пламенем (частицы углерода)
Бензол	<u>Г</u> орение	Обычно определяют путем исключения Горит коптящим пламенем
)Бромная вода 2)р-р Na ₂ CO ₃ 3) FeCI ₃	Обесцвечивание, выпадение белого осадка трибромфенола Выделение углекислого газа Фиолетовое окрашивание
1)Na)Горение	Выделение водорода Горят светлым голубоватым пламенем

Восстановление красной окраски у прокаленной

горячей медной проволоки

3) Черная горячая

Cu-

прокаленная

проволока

Многоатомные спирты	Cu(OH) ₂ + NaOH	Синее окрашивание – образование глицератов и др.
Амины	1)Лакмус 2) HHaI	В водном растворе – синее окрашивание Образует соли с галогеноводородами – после выпаривания твердый осадок
Анилин 1)Бромная вода 2)ННаІ	Обесцвечивание бромной воды, выподение осадка триброманилина После упаривания твердый осадок — соль гидрогалогенида анилина
)Aq ₂ O)Cu(OH) ₂	Реакция серебрянного зеркала Выпадения красного осадка Cu ₂ O
Карбоновые кислоты	Лакмус	Красное окрашивание ! Муравьиная – реакция серебрянного зеркала ! Олеиновая – обесцвечивание бромной воды
Крахмал	Раствор І ₂ в КІ или спиртовой раствор йода	Синее окрашивание
Белки	Конц. HNO ₃	Желтое окрашивание, при добавлении щелочного раствора - оранжевое

Условные обозначения

	условны	ic ooosna	-ICHPDI
и <u>зо</u> м «==»	Изомерия, обусловленная положением кратной связи	ц	Вещество имеет цвет
-1	Разветвление углеродного скелета	ヹ	Вещество не имеет цвет
«-OH»	Положение функциональных групп	За	Запах
C*	Оптическая изомерия	\mathbf{P}	Растворимость
$\stackrel{\sim}{-}$	Приставка	\mathbf{B}	Вкус
	Корень	$\mathbf{T}_{}$	Температура
·	Суффикс	$\mathbf{T}^{\mathbf{m}}$	Температура кипения
		Тпл	Температура плавления
 v∘≪≡»	Положение кратной связи		Зависит
Р	Рациональная	%	Процентное содержание
T(M)	Историческая, тривиальная номенклатура	« СаНа	Горение
C	Систематическая	A :	Реакция присоединения
C/X	Сельское козяйство	P :	Реакция раз пожения
	Кожевенное производство	O:	Реакция обмена
⊉	Медицина	3:	Реакция замещения
Š	Парфю мерная промышленность	Ox:	Реакция окисления
	Растворитель	red:	Реакция восстановления
Р-ЛЬ	Взрывчатые вещества	p H<7(>7)	Кислотные (основные) свойства
	Текстивная промышленность	t, P, Kat	Условия протекания реакций
_	Краситель	\rightarrow	Реакция не идет
		_	Инициалы и фамилия ученого
BMC	Высокомолекулярные соединения	®	Электрические свойства
<u> </u>	Кондитерская и пищевая промышленность	ен	Алкены
BMC	Вещества, употребляемые в пищу	аль	Альдегиды
•	Ускоряют созревание плодов в 3-4 раза	ол	Спирты
-25.5°	Микроорганиемы	$\mathbf{s}_{ ext{\tiny R}}$	Свободнорадикальный меканизм
∑ X	Зеркало	$\mathbf{S}_{\mathbf{E}}$	Электрофильное замещение
	Строительная функция	\mathbf{A}_{Nu}	Нуклеофильное присоединение
E	Энергетическая функция	-	Обратные процессы
Со	Агрегатное состояние вещества (его изменение в гомологическом ряду)	ТЭД	Теория электролитической диссоциации
33	Кристаплическая	ss	Система
Æ	Твердое	псдим	Периодическая система Дмитрия Ивановича Менделеева
<u> </u>	Жидкое	Me	Металл
•	Газообразное	Hal	Галоген
1			