ФГБОУ ВО «Рыбинский государственный авиационный технический университет имени П.А. Соловьёва»

> Калинина Кристина Леонидовна

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ МАССИВОВ РЕАГИРУЮЩИХ ДИФФУЗИОННЫХ СТРУЙ

Руководитель: д.т.н. Гурьянов Александр Игоревич

Рыбинск, 2019

АКТУАЛЬНОСТЬ

Традиционные камеры сгорания работали по схеме диффузионного горения:

- + стабильное пламя
- + высокая температура
- высокая скорость образования NOx

Современные камеры сгорания работают по схеме кинетического горения:

- высокая вероятность срыва пламени
- максимальная температура ниже, чем при использовании диффузионной схемы
- + низкая скорость образования NOx
- не позволяет работать при значениях степени повышения давления выше 45

Одним из вариантов решения проблем проскока и высокой эмиссии может быть применение **диффузионного горения с разделением зоны реакции**. Это позволит:

- сократить объемы камеры сгорания
- сократить время пребывания газов в зоне реакции
- снизить концентрацию Nox при такой же скорости их образования

Какое-то название

Один факел

В системах реагирующих микрофакелов возникают нестационарные взаимодействия,

которые сопровождаются:

- согласованными колебаниями;
- срывом пламени.

Массив факелов 2х2

Массив факелов 5х5

ПОСТАНОВКА ЧИСЛЕННОГО РАСЧЕТА

Расчетная модель:

- область горения цилиндр диаметром 0,25 м и высотой 0,6 м
- проточная часть горелки– куб 0,03 x 0,05 x 0,05 м и цилиндры форсунок высотой 0,005 м, диаметром 0,002 м
- блочная структурированная сетка из 1,7 млн узлов
- на выходе из топливных форсунок задано локальное сгущение с относительным коэффициентов 1,2
- для решения применены стационарные трехмерные уравнения Навье-Стокса, осредненные по Рейнольдсу
- модель турбулентности k-ε
- описание горения модель PDF Flamelet и BVM с подключенной схемой окисления пропана в воздухе
- задана массовая сила тяжести, направленная противоположно вектору импульса струй

Рисунок 1 – Расчетная модель: а) – расчетная модель, состоящая из атмосферного цилиндра и горелки; б) – модель горелки

Рисунок 2 – Варианты расположения форсунок: а – одиночная струя; б, в – линейные массивы; г-е – двумерные массивы

СПЕКТРЫ РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ И ОН-РАДИКАЛОВ

Рисунок 4 – Распределение температуры: а – одиночная струя; б – линейный массив из двух форсунок; в – линейный массив из трех форсунок; г – двумерный массив из четырех форсунок; д – двумерный массив из девяти форсунок

Рисунок 5 – Распределение ОН-радикалов при горении: а – линейного массива из 2 форсунок; б – двумерный массив из 4 форсунок OH.Mass Fraction 8.000e-004 7.333e-004 6.667e-004 6.000e-004 5.333e-004 4.667e-004 3.333e-004 2.667e-004 2.000e-004 1.333e-004 6.667e-005 0.000e+000

5

РЕЗУЛЬТАТЫ ЧИСЛЕННОГО РАСЧЕТА

Таблица 1. Параметры диффузионных факелов при фиксированном расходе топлива

	G = 0,045 г/с						
	1 струя	2 струи	3 струи	2x2	3x3	5x5	
l/d	169	115	80	98	94	95	
S _{он} · 10 ⁻³ , M ²	30,6	37	38,6	36	42,4	47,2	
S _{Mf} · 10⁻³, M²	22,6	27	30,8	26,3	29,6	33,9	
V _{ср} , м/с	2,1	1,7	1,5	1,4	1,4	1,3	
g _{C3H8} · 10 ^{−4}	6,9	10,8	12	12,8	11,3	3,9	
Re	960	490	290	250	110	40	

б

а

R

/ — длина факела, мм;

*S*_{он} — площадь изоповерхности OHрадикалов, м²;

 $S_{\rm Mf}$ — площадь изоповерхности коэффициента избытка воздуха, м²; α — коэффициент избытка воздуха; V_{cp} — осредненная по площади факела скорость течения, м/ч; $g_{\rm OH}$ — массовая доля OH-радикалов; $g_{\rm C3H8}$ — массовая доля топлива.

> Рисунок 3 – Изоповерхности массовой доли ОНрадикалов g_{он} = 0,0005: а – одиночная струя; б, в – линейные массивы; г, д – двумерные массивы

6

СРАВНЕНИЕ МОДЕЛЕЙ ВУМ И PDF

Рисунок 6 – Изоповерхности массовой доли ОН-радикалов g_{он} = 0,0005: а – модель горения BVM; б – модель горения PDF Flamelet

OH.Mass Fraction ohm 1.800e-003 1.687e-003 1.575e-003 1.462e-003 1.350e-003 1.237e-003 1.237e-003 1.225e-003 1.012e-003 8.999e-004 7.874e-004 6.749e-004 5.624e-004 3.375e-004 2.250e-004 1.125e-004 0.000e+000					
	а	б			
Рисунок 7 – Распределение ОН-радикалов при					

Рисунок 7 – Распределение ОН-радикалов при горении: а – модель горения BVM; б – модель горения PDF

	Массив 3х3 G ₋ = 0,027 г/с				
	Модель горения BVM	Модель горения PDF			
/d	50	55			
5 _{он} · 10 ⁻³ , м²	25,5	24,5			
5 _{мf} · 10 ⁻³ , м²	18,4	17,6			
И _{ср} , м/с	1,08	1,11			
g _{C3H8} · 10 ^{−4}	11,3	10,4			

Рисунок 8 – Распределение температуры: а – модель горения BVM;

б – модель горения PDF

7

ЗАКЛЮЧЕНИЕ

Разделение зоны горения на несколько взаимодействующих диффузионных факелов приводит к:

- уменьшению длины факела (массив из 3 факелов 80 калибров, массив 3х3– 94 калибра, в сравнении с одиночным факелом, длиной 169 калибров)
- увеличению площади реакции (площадь одиночного факела 30·10⁻³ м², площадь массива 3х3 42·10⁻³ м²)
- смещению максимальной температуры на периферию факела (из-за недостатка окислителя в приосевой зоне)

Сравнение результатов расчета на моделях горения BVM и PDF показало:

- длина факела, площадь фронта пламени и число несгоревшего топлива незначительно отличаются (5-8%) при расчете на моделях горения BVM и PDF
- обе модели дают результаты, отличные от эксперимента на 15-20%

Течение в системах микрофакелов является сложным и требует дополнительных расчетов в нестационарной постановке

Спасибо за внимание