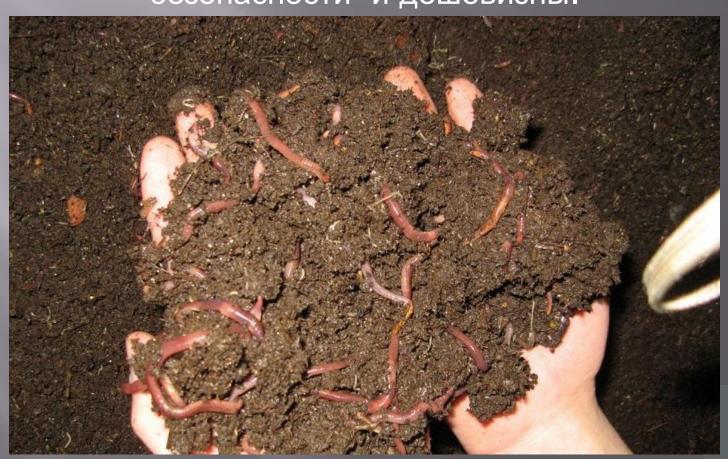

Сравнительная оценка различных методов дворового компостирования



Докладчик – Баранова Пелагея, ученица 10 класса МОУ «Средняя общеобразовательная ноосферная школа» г. Боровска

Калуга -

Цель работы:

Сравнить различные способы дворового компостирования для выбора оптимального, с точки зрения простоты воспроизведения, микробиологической безопасности и дешевизны.

Задачи работы:

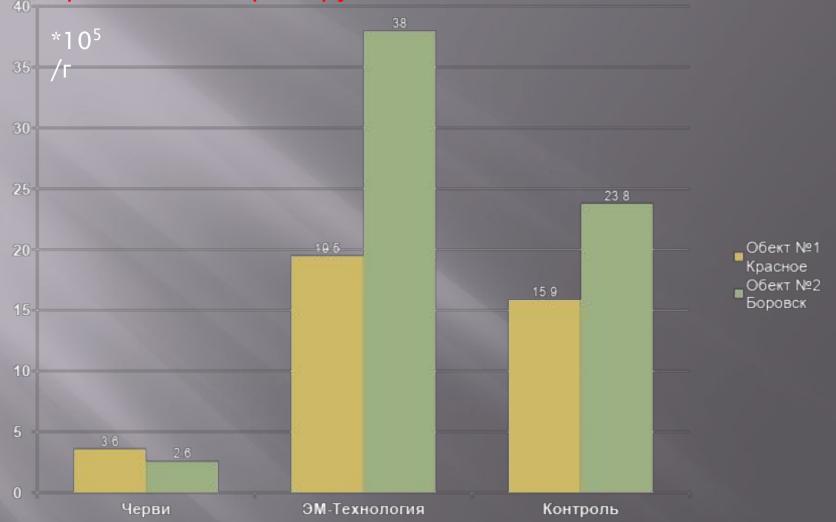
- 1. Изучить коммерческую линейку препаратов для ускорения компостирования.
- 2. Освоить и прописать методику приготовления компоста при помощи вермикультуры и коммерческого препарата «Компост-25» (биоускорителя переработки дачных отходов).
- 3. Оценить динамику развития микрофлоры в процессе приготовления компоста.
- 4. Оценить безопасность микрофлоры для человека.
- 5. Установить сроки приготовления компоста различными способами.
- 6. Выбрать наиболее простой по технологии приготовления, быстрый и безопасный способ компостирования бытовых отходов в условиях частного хозяйства.

Состав бытовых отходов:

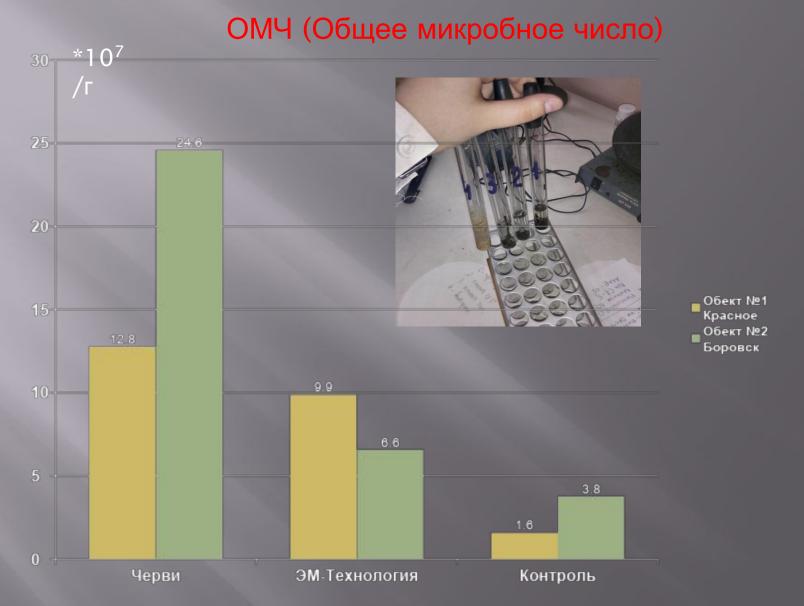
кожура от овощей и фруктов (картофель, свекла, морковь, кабачки, лук, чеснок), отходы приготовленной отварной или жареной пищи, использованная заварка чая (в т. ч. чайные пакетики), кофейная гуща,

скошенная и выполотая измельченная трава, сорняки, жмых от яблок, ягод, тыквы (после отжима сокопрессом), листовой опад.

В приусадебном хозяйстве №2 (Боровск) содержатся куры, 1/3 часть отходов составлял птичий помет.


БОКС №1: ВЕРМИКОМПОСТ. Помещено около 400 особей красного калифорнийского червя (приобретены на вермиферме д. Воробьи Малоярославецкого рона), предварительно черви прошли 7-дневную адаптацию.

БОКС №2: ЭМ-ТЕХНОЛОГИЯ. Бытовые отходы были обработаны препаратом «Компост-25». Содержимое пакета смешивали с 5л воды, настаивали 20мин и поливали компост. Повторяли 1 раз в неделю, 4 раза.


Биопрепарат «Компост-25», страна-производитель: Южно-Африканская Республика, приобретен в магазине Леруа-Мерлен, 4 пачки по 25г (цена 45 рублей за 1 пачку)

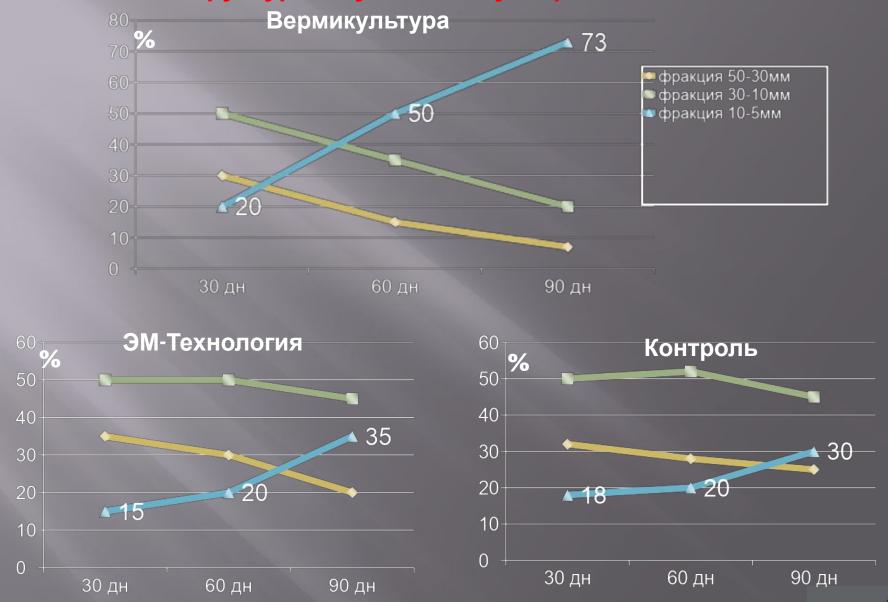
БОКС № 3: КОНТРОЛЬНЫЙ. Бытовые отходы ничем не обрабатывались, но также регулярно увлажнялись и перемешивались.

Содержание бактерий группы кишечной палочки БГКП (E.coli)

Вермикомпостирование значительно снижает содержание бактерий группы кишечной палочки (E.coli) по сравнению компостом по ЭМ-Технологии и контролем, что свидетельствует о его потенциальной безопасности. Препарат «Компост-25» не сработал не на приусадебном хоз-ве №1 (Красное), не на приусадебном хоз-ве №2 (Боровск). А показатели в контроле были даже лучше.

Общее микробное число в вермикомпосте в 2 раза выше, чем в ЭМ-технологии, и в 6 раз выше, чем в контроле, что говорит об ускоренном протекании микробиологических процессов при вермикомпостировании.

Изменение структуры изучаемых субстратов (Приусадебное хоз-во №1)


	Размер фракций			Размер фракций			Размер фракций		
	50-30мм	30-10мм	5-10мм.	50-30мм	30-10мм	5-10мм.	50-30мм	30-10мм	5-10мм.
	30 дней с начала опыта			60 дней с начала опыта			90 дней с начала опыта		
Черви	30%	50%	20%	15%	35%	50%	7%	20%	73%
ЭМ- Технология	35%	50%	15%	30%	50%	20%	20%	45%	35%
Контроль	32%	50%	18%	28%	52%	20%	25%	45%	30%

Визуальная оценка зрелости компоста показала, что количество фракций 5 – 10 мм в компосте с вермикультурой на 50% выше по сравнению с другими методами компостирования

Изменение структуры изучаемых субстратов (Приусадебное хоз-во №1)

Количество фракций 10-5 мм в компосте с вермикультурой на 50% выше по сравнению с другими методами компостирования

Результаты анализа адаптационных способностей червей

(Первичная масса червей в 10 см3 компоста составляла 10г)

Объект	Период	Прирост биомассы, г	Количество коконов, шт	Количество ювенильных особей, шт
Приусадебное	30 дн	2,7	14	24
хоз-во №1	60 дн	3,2	16	20
(Красное)	90 дн	3,6	12	19
Приусадебное	30 дн	2,3	16	22
хоз-во №2	60 дн	2,7	18	24
(Боровск)	90 дн	3,2	16	21

Заселенная популяция червей показала хорошие адаптационные способности: прирост биомассы составил в среднем 3 грамма за 30 дней, количество коконов составило в среднем 15 штук, ювенильных особей – 22 штуки в 10 см3 компоста.

Сравнение эффективности различных способы дворового компостирования

Критерии	Вермикультура	ЭМ-Технология	Контроль
Стоимость	+++	++	-
Сложности воспроизведения	+++	++	+
Микробиологическая безопастность	++	+	+
Скорость «созревания» компоста	+++	++	+
Структура компоста	+++	+	+

- 1. Вермикомпостирование значание осникает содержание бактерий группы кишечной палочки (E.coli) (3,64*105 и 2,55*105 коЕ/г) по сравнению компостом по ЭМ-Технологии (1,95 *106 и 3,80*106 коЕ/г) и контролем (1,59*106 и 2,38*106 коЕ/г), что свидетельствует о его потенциальной безопасности.
- 2. ОМЧ в вермикомпосте в 2 раза выше, чем в ЭМ-технологии, и в 6 раз выше, чем в контроле что говорит об ускоренном протекании микробиологичества.

чем в контроле, что говорит об ускоренном протекании микробиологичес-ких процессов при вермикомпостировании.

- 3. Визуальная оценка зрелости компоста показала, что количество фракций 5–10 мм в компосте с вермикультурой на 50% выше по сравнению с другими
 - методами компостирования, что указывает на более эффективную переработку пищевых отходов червями.
- 4. Заселенная популяция червей показала хорошие адаптационные способности: прирост биомассы особи составил в среднем 3 грамма за 30 дней, количество коконов составило в среднем 32 штуки, ювенильных особей 15 штук в 10 см3 компоста.
- 5. Вермикультивирование является наиболее трудоемким способом компостирования по сравнению с другими исследуемыми способами. Оно требует
- серьезного подхода и определенных знаний и навыков для широк ния этого метода «в массы».
- 6. Коммерческий препарат «Компост-25» показал более низкую

Заключение:

- □ Придомовое компостирование является одним из самых доступных и эффективных способов снижения количества ТБО и повышения плодородия почвы. Компостирование снижает экологический риск замусоривания территорий и выделения в окружающую среду продуктов разложения.
- □ Самым малозатратным способом является простое складирование мусора (пищевых и с.-х. отходов) и естественная переработка его в течение длительного времени. При этом качество и скорость переработки низкие. Также может происходить размножение болезнетворных бактерий.
- □ Самым эффективным (по скорости и качеству образующегося компоста) и безопасным является вермикомпостирование, но оно требует определенных знаний, навыков (трудоемкое) и денежных затрат.
- Мы не рекомендуем использовать для ускорения процессов компостирования препарат «Компост-25» в связи с его низкой эффективностью.

Необходимы дальнейшие исследования:

- -Оценка качества компоста путем использования его в качестве подкормки для тест-культур растений.
- -Определение оптимальной нормы внесения компоста на $10~{\rm M}^2$ огорода.
- -Анализ на содержание гуминовых кислот (в сравнении с пробой почвы на месте).
- -Посев на содержание целлюлозолитических бактерий (в сравнении с пробой почвы на месте).
- -Оценка выживаемости червей после перезимовки и календарные сроки их восстановления после анабиоза.

Благодарю за внимание!

Выражаем благодарность и признательность в помощи проведения микробиологических исследований Овчаровой Анастасии Никитовне, а также зав. лаборатории микробиологии, биохимии и питания с.х. животных Петракову Е.С.