1.4. Основные этапы решения задач на компьютере

Этапы разработки программы

В процессе создания любой программы можно выделить несколько этапов:

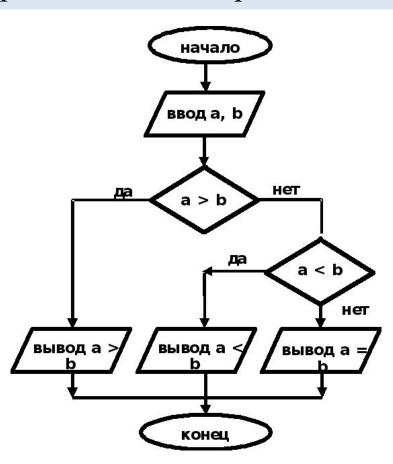
- •Постановка задачи
- •Анализ, формализованное описание задачи, выбор модели
- •Выбор или разработка алгоритма решения задачи
- •Проектирование общей структуры программы
- •Кодирование программы
- •Отладка и верификация программы
- •Получение результата, его интерпретация и, возможно, последующая модификация модели
- •Публикация или передача заказчику результата работы
- •Сопровождение программы

Алгоритм — это конечная совокупность точно заданных правил решения произвольного класса задач или набор инструкций, описывающих порядок действий исполнителя для решения некоторой задачи.

Современное формальное определение вычислительного алгоритма было дано в 30—50-е годы XX века в работах Тьюринга, Поста, Чёрча (тезис Чёрча— Тьюринга), Н. Винера, А. А. Маркова.

Само слово «алгоритм» происходит от имени хорезмского учёного аль-Хорезми. Около 825 года он написал сочинение Китаб аль-джебр валь-мукабала («Книга о сложении и вычитании»), из оригинального названия которого происходит слово «алгебра» (аль-джебр — восполнение).

Страница из «Алгебры» аль-Хорезми — хорезмского математика, от имени которого происходит слово алгоритм

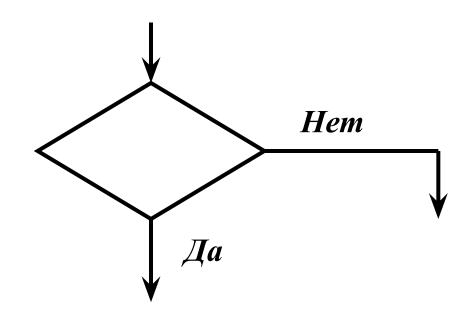

Свойства алгоритма

- дискретность: алгоритм должен представлять процесс решения задачи как упорядоченное выполнение некоторых простых шагов. При этом для выполнения каждого шага алгоритма требуется конечный отрезок времени, то есть преобразование исходных данных в результат осуществляется во времени дискретно.
- понятность: алгоритм должен включать только те команды, которые доступны исполнителю и входят в его систему команд.
- определенность (детерминированность): в каждый момент времени следующий шаг работы однозначно определяется состоянием системы. Таким образом, алгоритм выдаёт один и тот же результат (ответ) для одних и тех же исходных данных.

- конечность: заканчивается за конечное число шагов
- массовость: (универсальность). Алгоритм должен быть применим к разным наборам начальных данных.
- корректность: дает верное решение при любых допустимых исходных данных

Элементы блок-схем

Блок-схема — распространенный тип схем (графических моделей), описывающих алгоритмы или процессы, в которых отдельные шаги изображаются в виде блоков различной формы, соединенных между собой линиями, управляющими направление последовательности

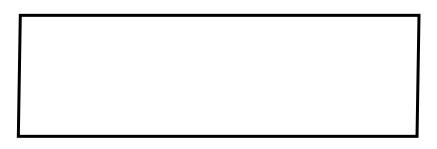

Блок начало-конец

Элемент отображает выход во внешнюю среду и вход из внешней среды (наиболее частое применение — начало и конец программы). Внутри фигуры записывается соответствующее действие.

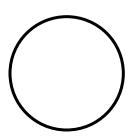
Блок действия


Выполнение одной или нескольких операций, обработка данных любого вида . Внутри фигуры записывают непосредственно сами операции, например, операцию присваивания: a=10*b+c

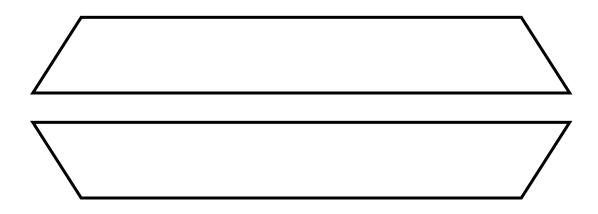
Логический блок


Отображает решение или функцию переключательного типа с одним входом и двумя или более альтернативными выходами, из которых только один может быть выбран после вычисления условий, определенных внутри этого элемента.

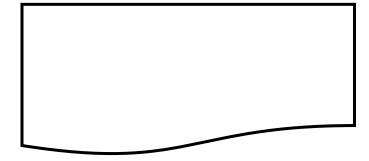
Предопределенный процесс


Символ отображает выполнение процесса, состоящего из одной или нескольких операций, который определен в другом месте программы (в подпрограмме, модуле). Внутри символа записывается название процесса и передаваемые в него данные. Например, в программировании — вызов процедуры или функции.

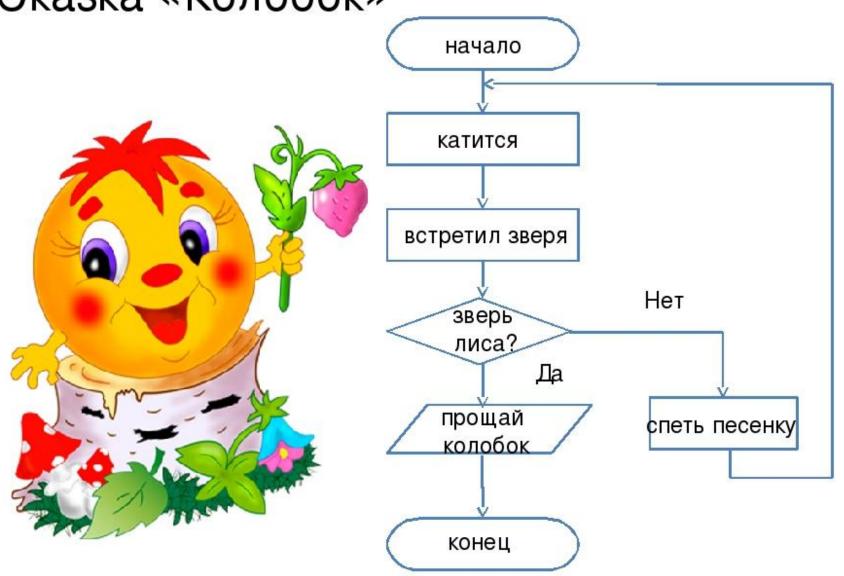
Блок ввода-вывода


Преобразование данных в форму, пригодную для обработки (ввод) или отображения результатов обработки (вывод). Данный символ не определяет носителя данных (для указания типа носителя данных используются специфические символы).

Соединитель


Символ отображает вход в часть схемы и выход из другой части этой схемы. Используется для обрыва линии и продолжения её в другом месте (для избежания излишних пересечений или слишком длинных линий, а также, если схема состоит из нескольких страниц). Соответствующие соединительные символы должны иметь одинаковое (при том уникальное) обозначение.

Цикл


Символ состоит из двух частей — соответственно, начало и конец цикла — операции, выполняемые внутри цикла, размещаются между ними. Условия цикла и приращения записываются внутри символа начала или конца цикла — в зависимости от типа организации цикла. Часто для изображения на блок-схеме цикла вместо данного символа используют символ условия, указывая в нём решение, а одну из линий выхода замыкают выше в блок-схеме (перед операциями цикла).

Документ

Вывод данных на печатающее устройство

Сказка «Колобок»

Составьте блок-схему алгоритма решения поставленной задачи.

Задача 1.

Даны длины сторон треугольника А, В, С. Найти площадь треугольника S.

Задача 2.

Вычислить путь, пройденный лодкой, если ее скорость в стоячей воде v км/ч, скорость течения реки v1 км/ч, время движения по озеру t1 ч, а против течения реки – t2 ч.

S:=T1*V + T2*(V - U)