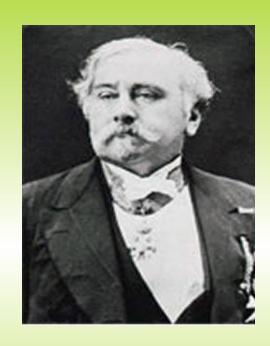

Тема:

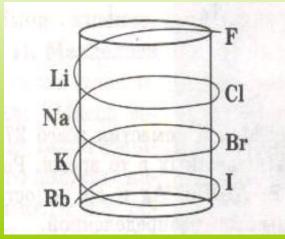
Классификация химических элементов

1. И. Я. Берцелиус (шведский учёный) классифицировал все элементы на металлы и неметаллы. Он определил, что металлам чаще всего соответствуют основные оксиды и основания, а неметаллам – кислотные оксиды и кислоты.

- □ Na→Na2O→NaOH
- $\square S \rightarrow SO2 \rightarrow H2SO3$

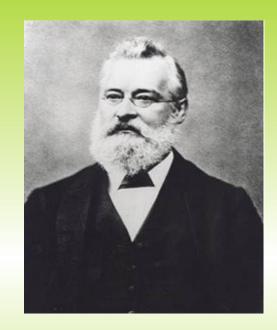
2. И. В. Дёберейнер (немецкий химик) в 1829 г. предпринял первую значимую попытку систематизации элементов . Он заметил, что некоторые сходные по своим свойствам элементы можно объединить по три в группы, которые он назвал триадами. Триады Дёберейнера:




<u>Li</u>	<u>Ca</u>	<u>P</u>	<u>(7)</u>	디
<u>Na</u>	<u>Sr</u>	<u>As</u>	<u>e</u> S	<u>Br</u>
<u>K</u>	<u>Ba</u>	<u>Sb</u>	<u>Te</u>	<u>l</u>

$$M (Na) = (7 + 39) / 2 = 23$$

3. А. Бегье де Шанкуртуа (профессор Парижской высшей школы) в 1862 г. Предложил располагать элементы по спирали в порядке возрастания их атомных масс.


Спираль Шанкуртуа:



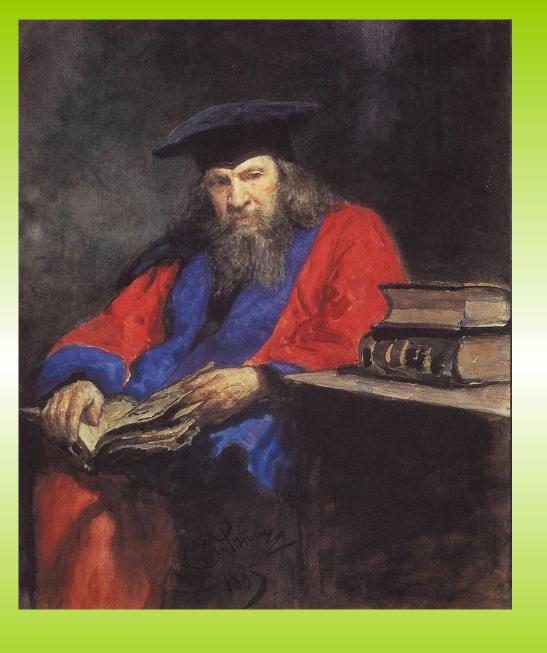
4. Д. Ньюлендс (английский учёный) в 1865 г. расположил элементы в порядке возрастания их атомных масс. Заметил, что сходство в свойствах проявляется между каждым восьмым элементом. Такую закономерность Ньюлендс назвал законом октав по

аналогии с семью интервалами музыкальной гаммы. Октава Ньюлендса:

ДО	<u>pe</u>	<u>МИ</u>	<u>фа</u>	<u>соль</u>	<u>ля</u>	<u>СИ</u>
푀	三	<u>Be</u>	B	<u>Cl</u>	Z	O
<u>E</u>	<u>Na</u>	<u>Mg</u>	<u>Al</u>	<u>Si</u>	띠	<u>(7)</u>
<u></u>	K	<u>Ca</u>	iΠ	<u>Cr</u>	<u>Mn</u>	<u>e</u>
<u>Co Ni</u>	<u>Cu</u>	V	<u>Zn</u>	<u>In</u>	<u>As</u>	<u>Se</u>

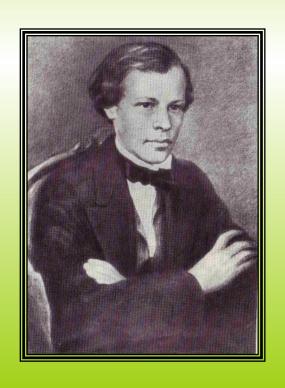
5. Л. Мейер (немецкий химик) в 1864 г. расположил химические элементы в порядке увеличения атомных масс и по валентности.

Таблица Мейера содержала только **28 элементов.**

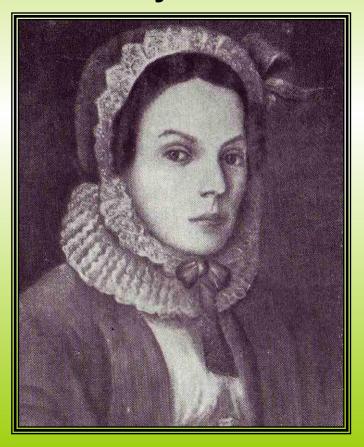

	Вален	Вален	Вален	Вален	Вален	Вален
	тность	тность	тность	тность	тность	тность
	IV	III	П	- 1	- 1	II
I ряд					<u>:i</u>	<u>Be</u>
II ряд	<u>C</u>	<u>N</u>	<u>O</u>	<u>E</u>	<u>Na</u>	<u>Mg</u>
III ряд	<u>Si</u>	<u>P</u>	<u>S</u>	<u>Cl</u>	<u>K</u>	<u>Ca</u>
IV ряд		<u>As</u>	<u>Se</u>	<u>Br</u>	<u>Rb</u>	<u>Sr</u>
V ряд	<u>Sn</u>	<u>Sb</u>	<u>Te</u>	<u> </u>	<u>Cs</u>	<u>Ba</u>
VI ряд	<u>Pb</u>	<u>Bi</u>			Ξ	

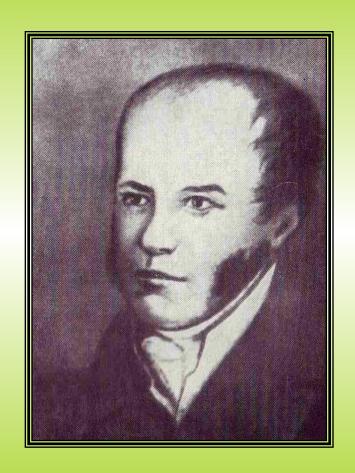
Вывод

Классификация химических элементов была не точной, не научной, не совершенной, так как за основу классификации брался не главный признак.


Тема:

Периодический закон и Периодическая система химических элементов Д.И Менделеева


Д.И. Менделеев (1834 — 1907 гг.)


• Родился Д.И.Менделеев 27 января (6 февраля) 1834 г. в городе Тобольске.

Мария Дмитриевна Менделеева (1793 - 1830), мать ученого

Иван Павлович Менделеев (1783 - 1847), отец ученого

Д.И. Менделеев учился в Тобольской гимназии, а затем в Педагогическом институте в Петербурге.

Охотно занимался физикой и математикой.

В институте он встретил выдающихся учителей, умевших заронить в души своих слушателей глубокий интерес к науке.

В 1855 г. Д. И. Менделеев окончил институт с золотой медалью, получил диплом старшего учителя.

В 1864 г. был избран профессором Петербурского технологичестого института.

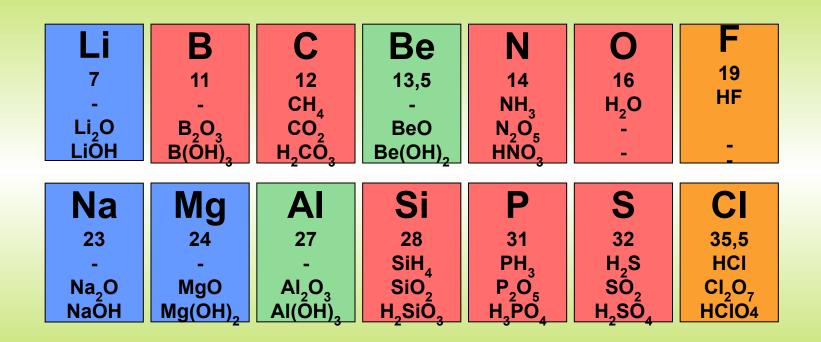
С 1867 г. занимал в университете кафедру неорганической химии.

В основу работ по классификации химических элементов Д.И.Менделеева положены два признака:

- 1. Величины атомных весов.
- 2. Химические свойства.

Карточка с химическим элементом

C


12

CH₄

CO₂
H₂CO₃

- Символ элемента
- Атомная масса элемента
- Формула летучего соединения с водородом
- Формула высшего оксида
- Формула соответствующего гидроксида

Начало классификации химических элементов Д. И. Менделеевым

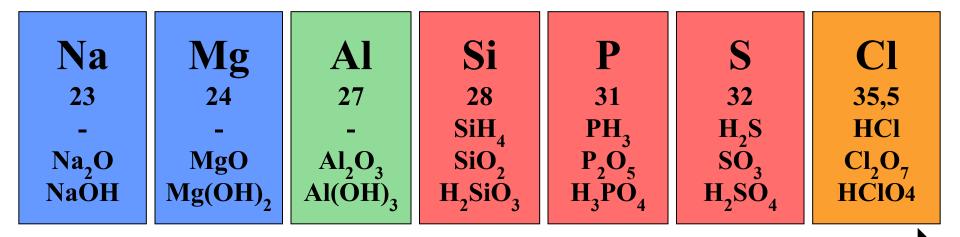
9 -BeO Be(OH)₂

Li 7 -Li₂O LiOH

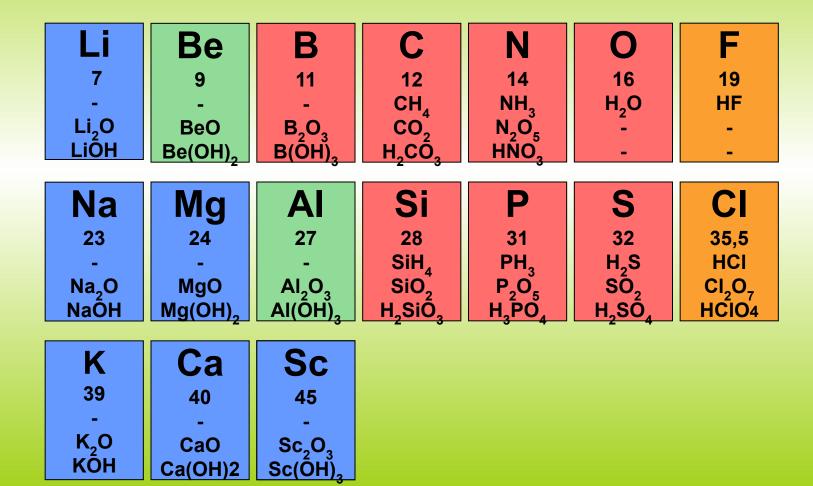
B 11 -B₂O₃ B(OH)₃ 12 CH₄ CO₂ H₂CO₃

Be 13,5 -BeO Be(OH)₂ N 14 NH₃ N₂O₅ HNO₃ 16 H₂O -

F 19 HF -

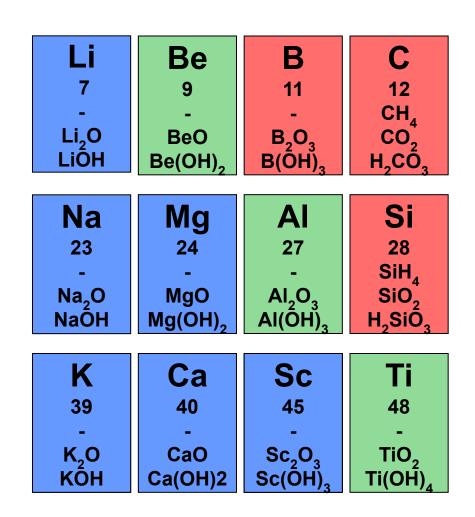

Na 23 -Na₂O NaOH Mg 24 -MgO Mg(OH)₂ 27 -Al₂O₃ Al(OH)₃

28 SiH₄ SiO₂ H₂SiO₃


P 31 PH₃ P₂O₅ H₃PO₄

32 H₂S SO₂ H₂SO₄ 35,5 HCI CI₂O₇ HCIO4

Изменение химических свойств в рядах



- 1. Металлические свойства простых веществ, наиболее ярко выражены у щелочных металлов, ослабевают и сменяются неметаллическими, которые наиболее ярко выражены у галогенов:
- Основные оксиды элементов начала ряда сменяет амфотерный оксид и далее кислотные, кислотность которых усиливается;
- Основания через амфотерный гидроксид сменяются все более сильными кислотами;
- 2. Значение валентности атомов в высших оксидах возрастает от I до VII.

Изменение химических свойств в столбцах

- 1. Металлические свойства усиливаются сверху вниз, а неметаллические ослабевают;
- **2.** Значение валентности атомов в высших оксидах не изменяется;

H 1 -H₂O -

Открытие благородных газов и положение водорода

H 1 -H₂O - He 4 --

Li 7 -Li₂O LiOH **Be** 9 -BeO Be(OH)₂ B 11 -B₂O₃ B(OH)₃

C 12 CH₄ CO₂ H₂CO₃ N 14 HNO₃ N₂O₅ NH₃ O 16 H₂O -

F 19 HF - Ne 20 --

Na 23 -Na₂O NaOH Mg 24 -MgO Mg(OH)₂ 27 -Al₂O₃ Al(OH)₃

 $\begin{array}{c} \textbf{Si} \\ 28 \\ \text{SiH}_4 \\ \text{SiO}_2 \\ \text{H}_2 \text{SiO}_3 \end{array}$

P 31 PH₃ P₂O₅ H₃PO₄

32 H₂S SO₂ H₂SO₄ 35,5 HCI CI₂O₇ HCIO4

Ar40
-

K 39 -K₂O KOH Ca 40 -CaO Ca(OH)2 \$c 45 -\$c₂O₃ \$c(OH)₃ **Ti**48
TiO₂
Ti(OH)₄

Периодический закон (формулировка Д. И. Менделееева)

Свойства элементов, а потому и свойства образуемых ими простых и сложных тел находятся в периодической зависимости от их атомного веса.

День рождения великого закона 1 марта 1869 г.

Значение Периодического закона и Периодической системы Д. И. Менделеева

Периодический закон:

- Основа современной химии;
- Его открытие дало мощнейший толчок в развитии химических знаний;
- Были разработаны теории строения атома и химической связи.

Благодаря Периодической системы Д. И. Менделеева:

- Сложилось современное понятие о химическом элементе:
- Были уточнены представления о <u>простых веществах и</u> соединениях;
- Появление периодической системы открыло новую, научную эру в истории химии и ряде смежных наук появилась <u>стройная</u> <u>система</u>, на основе которой стало возможным обобщать, делать выводы, предвидеть.