Химические реакции

Химическая реакция - превращение одних веществ (исходных соединений) в другие (продукты реакции) при неизменяемости ядер атомов

ЯВЛЕНИЯ

ФИЗИЧЕСКИЕ

Изменение состояния или формы вещества, которые не приводят к образованию новых веществ

ХИМИЧЕСКИЕ

Превращения веществ, в результате которых образуются новые вещества

Энергия активации реакции

- При сближении реагирующих частиц вследствие одинакового знака зарядов электронных оболочек они отталкиваются.
- Если молекулы не обладают достаточной кинетической энергией, то они разлетаются в разные стороны.
- Только те частицы, которые обладают некоторым минимальным избыточным, относительно среднего, запасом энергии, при сближении преодолевают силы отталкивания.
- Дополнительная энергия, которую должны иметь молекулы для вступления в химическую реакцию, называется энергией активации.
- Те частицы, которые обладают таким избыточным количеством энергии энергией активации, называются активными

Признаки химических реакций:

- 1. Изменение цвета;
- 2. Изменение запаха;
- 3. Выпадение (растворение) осадка;
- 4. Выделение газа;
- 5. Выделение (поглощение) теплоты

Условия протекания химических реакций

- 1.Изменение температуры (нагревание/охлаждение).
- 2. Изменение давления (уменьшение/увеличение).
- 3. Соприкосновение, перемещение.
- 4. Измельчение.
- 5. Действие света, электрического тока.
- 6. Применение катализаторов и ингибиторов.

Нормальные условия - н.у.:

Давление: p = 1 атм = 101325 Па (10^5 Па) Температура: T = 273,15 К (0° С)

Алгоритм составления уравнений химических реакций

1. В левой части записываются формулы веществ, которые вступают в реакцию:

$$KOH + CuCl_2 \rightarrow$$

2. В правой части (после стрелки) – формулы веществ, которые получаются в результате реакции:

3. Затем с помощью коэффициентов уравнивается число атомов одинаковых химических элементов в правой и левой частях уравнения:

$$2KOH + CuCl_2 = Cu(OH)_2 + 2KCl$$

Классификаци я химических реакций

По числу и составу исходных веществ и

продуктов реакции

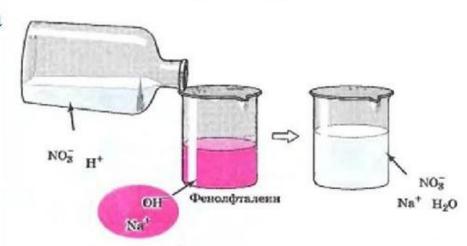
Реакции соединения	Реакции разложения	Реакции замещения	Реакции обмена
Из нескольких веществ образуется одно новое вещество $\mathbf{A} + \mathbf{B} = \mathbf{A}\mathbf{B}$	Из одного вещества образуется несколько новых веществ $\mathbf{AB} = \mathbf{A} + \mathbf{B}$	Атомы простого вещества замещают атомы одного из элементов в сложном веществе $A + BC = AC + B$	Два сложных вещества обмениваются своими составными частями AB + CD = AD + CB
$S + O_2 = SO_2$	$CaCO_3 \xrightarrow{\iota} CaO + CO_2$	$Zn + 2HCl =$ $= ZnCl_2 + H_2$	NaOH + HCl = = NaCl + H ₂ O

Реакция нейтрализации

Взаимодействие кислоты и основания с образованием соли и воды называется реакцией нейтрализации. Обычно подобные реакции протекают с выделением тепла.

Это - частный случай реакции обмена

Реакция нейтрализации – сильная кислота + сильное основание:


$$HCl + NaOH = H2O + NaCl$$
, $\Delta H = -58$ κ $\Delta x/Moλb$, $HCl + KOH = H2O + KCl$, $\Delta H = -58$ κ $\Delta x/Moλb$, $HNO3 + NaOH = H2O + NaNO3$, $\Delta H = -58$ κ $\Delta x/Moλb$, $HNO3 + KOH = H2O + KNO3$, $\Delta H = -58$ κ $\Delta x/Moλb$.

Точка эквивалентности

это момент окончания химической реакции, когда вещества прореагировали в эквивалентных количествах.

достижение точки эквивалентности фиксируют с

помощью индикатора

По изменению степени окисления

Химические реакции

идущие без изменения степени окисления элементов

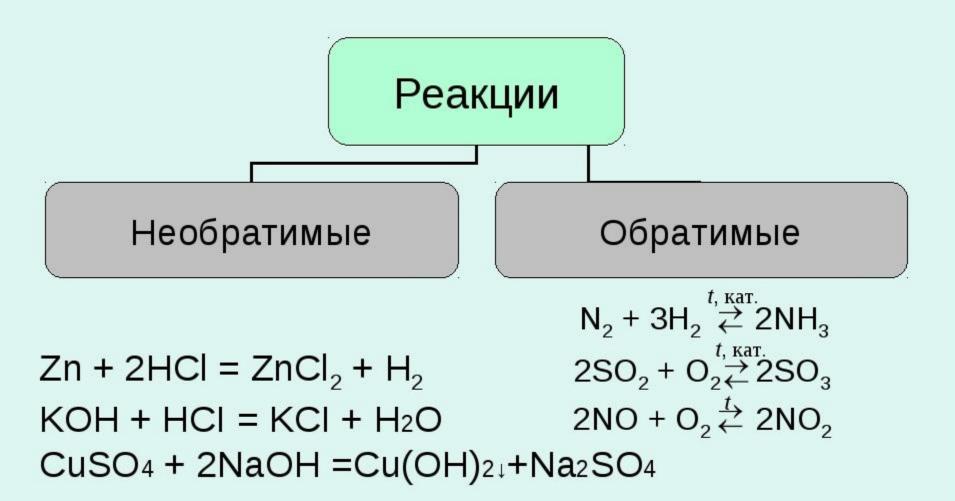
$$+2 -2 +1 +2 -2 +1 -2$$

 $Cu(OH)_2 = CuO + H_2O$

идущие с изменением степени окисления элементов (ОВР)

$$0 \quad 0 \quad +2-2$$
$$2Cu + O_2 = 2CuO$$

По тепловому эффекту


экзотермические (выделение тепла)

$$S + O_2 = SO_2 + Q$$

эндотермические (поглощение тепла)

$$\vdash$$
 CaCO₃ \rightarrow CaO +CO₂ \rightarrow Q

по признаку обратимости

по фазовому составу:

1) Гетерогенные реакции – реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях $CaC_{2(\tau)} + 2H_2O_{(ж)} = C_2H_2 \uparrow + Ca(OH)_{2(p-p)}$

2) Гомогенные реакции – реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии $H_{2(r)} + F_{2(r)} = 2HF_{(r)}$

• Некаталитические реакции — реакции, идущие без участия катализатора:

t

$$2HgO = 2Hg + O_{2}\uparrow$$

• Каталитические реакции – реакции, идущие с участием катализатора:

MnO,

$$2\mathbf{H}_{2}\mathbf{O}_{2} = 2\mathbf{H}_{2}\mathbf{O} + \mathbf{O}_{2}\uparrow$$

Скорость химической реакции -

это изменение қонцентрации одного из реагирующих веществ или одного из продуктов реакции в единицу времени

Скорость гомогенной и гетерогенной реакций

Скорость гомогенной реакции

определяется как изменение концентрации одного из веществ в единицу времени:

$$v_{\text{romor}} = \frac{\Delta C}{\Delta t} \left[\frac{\text{моль}}{\text{л} \cdot \text{c}} \right],$$

если объем системы не меняется

Скорость гетерогенной реакции определяется как изменение количества вещества в единицу времени на единице поверхности:

$$v_{\text{rerepor}} = \frac{\Delta n}{\Delta t \cdot S} \left[\frac{\text{моль}}{\text{c} \cdot \text{m}^2} \right],$$

где S — площадь поверхности соприкосновения веществ (M^2 , CM^2).

Факторы, влияющие на скорость химической реакции

- природа реагирующих веществ
- температура
- концентрация реагирующих веществ
- наличие катализатора (ингибитора)
- площадь поверхности соприкосновения веществ
- давление

Зависимость скорости химической реакции от природы веществ

Скорость химических реакций зависит от природы реагирующих веществ. Под "природой веществ" понимают:

- тип химических связей в молекулах реагентов, прочность связей;
- строение кристаллической решетки и ее прочность;

строение атома, прочность связывания внешних

электронов

Влияние температуры на скорость химической реакции

Правило Вант-Гоффа:

 При увеличении температуры на каждые 10⁰ скорость химической реакции увеличивается в 2-4 раза

Зависимость скорости реакции от концентрации реагирующих веществ

- Эту зависимость описывает закон действующих масс: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ;
- В случае реакции nA + m В → С этой зависимости соответствует уравнение:

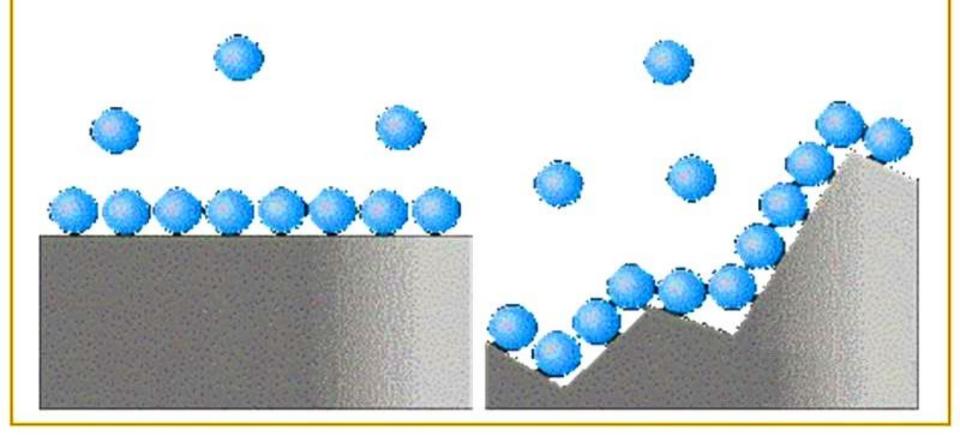
Константа скорости химической реакции

Константа скорости k — это такая скорость, когда концентрации реагирующих веществ равны 1 моль/л. Она зависит от природы реагирующих веществ и температуры, но не зависит от изменения концентрации участвующих в реакции веществ.

Чем **больше** константа скорости реакции, тем больше ее скорость по сравнению с другими реакциями при прочих равных условиях

Влияние катализаторов и ингибиторов на скорость химической реакции:

Катализаторы - вещества, увеличивающие скорость химической реакции, но в конце реакции остающиеся неизменными как качественно, так и количественно. В обратимых реакциях увеличивают скорость как прямой, так и обратной реакции.


Ингибиторы - вещества, замедляющие скорость химической реакции, но в конце реакции остающиеся неизменными как качественно, так и количественно.

Катализ - изменение скорости химической реакции под действием катализатора

Площадь соприкосновения

Скорость гетерогенной реакции *прямо пропорциональна* площади поверхности соприкосновения реагентов.

При измельчении и перемешивании увеличивается поверхность соприкосновения реагирующих веществ, при этом возрастает скорость реакции

Влияние давления на скорость химической реакции

Если в реакции участвуют газообразные вещества, то повышение давления равносильно сжатию газа, т.е. увеличению его концентрации. При увеличении концентрации газообразного компонента скорость реакции в соответствии с законом действующих масс возрастает.

При понижении давления газ расширяется, и его концентрация в системе падает, это вызывает уменьшение скорости реакции

Химическое равновесие

 Состояние системы, при котором скорость прямой реакции равна скорости обратной реакции, называется химическим равновесием

Равновесными қонцентрациями называются концентрации всех веществ системы, которые устанавливаются в ней при наступлении состояния химического равновесия

 Количественной характеристикой химического равновесия является константа равновесия, которая может быть выражена через равновесные концентрации С реагирующих веществ.

$$aA + bB + ... \leftrightarrow mM + nN + ...$$

$$\mathbf{K}_{\mathbf{C}} = \frac{\mathbf{C}_{\mathbf{M}}^{\mathbf{m}} \mathbf{C}_{\mathbf{N}}^{\mathbf{n}}}{\mathbf{C}_{\mathbf{A}}^{\mathbf{a}} \mathbf{C}_{\mathbf{B}}^{\mathbf{b}}}$$

- Величина константы равновесия зависит только от природы реагирующих веществ и температуры.
- физический смысл константы равновесия: она показывает, во сколько раз скорость прямой реакции больше скорости обратной при данной температуре и концентрациях всех реагирующих веществ, равных 1 моль/л

Знание константы равновесия химической реакции позволяет

предсказать направление ее протекания:

- К > 1 равновесие сдвинуто вправо,
- К < 1 равновесие сдвинуто влево,
- К = 1 система находится в состоянии равновесия

Химическое равновесие

- В состоянии химического равновесия количественное соотношение между реагирующими веществами и продуктами реакции остается постоянным: сколько молекул продукта реакции в единицу времени образуется, столько их и разлагается. Это состояние сохраняется до тех пор, пока неизменными остаются концентрация, температура и давление.
- Многочисленные исследования показали, что смещение химического равновесия подчиняется правилу, названному принципом Ле-Шателье:

При изменении внешних условий химическое равновесие смещается в сторону той реакции (прямой или обратной), которая ослабляет это внешнее воздействие

Изменение температуры

Изменение концентрации

Изменение давления

Смещение химического равновесия

№	Фактор, влияющий на смещение равновесия	Направление смещения равновесия	
1	Концентрация С	при ↑С одного из реагентов равновесие сдвигается в направлении образования продуктов реакции →	
		при \uparrow \mathbf{C} одного из продуктов реакции равновесие сдвигается в направлении образования реагентов \leftarrow	
2	Давление Р* (приводит к↑С)	при $\uparrow P$ равновесие сдвигается в направлении образования вещести (реагентов или продуктов) с меньшим объемом ($\downarrow P$)	
		при $\downarrow P$ равновесие сдвигается в направлении образования веществ (реагентов или продуктов) с большим объемом ($\uparrow P$)	
3	Температура Т	при Т химическое равновесие смещается в направлении эндотермической реакции	
		при ↓ T – в направлении 3к30термической реакции	

Введение катализатора не влияет на смещение равновесия, но ускоряет процесс достижения равновесия

Обобщение и выводы

- Химические реакции протекают с различными скоростями. Скорость химической реакции это изменение концентрации одного из реагирующих веществ за единицу времени.
- Скорость химической реакции зависит от температуры, концентрации, поверхности соприкосновения реагирующих веществ, природы реагирующих веществ, катализатора.
- В обратимых химических реакциях наступает динамическое химическое равновесие, когда скорости прямой и обратной реакции равны.
- Факторы влияющие на смещение химического равновесия давление, температура, концентрация.
- Смещение химического равновесия происходит согласно принципа Ле-Шателье.