МАНОМЕТРЫ ОБЩЕПРОМЫШЛЕННОГО ТИПА

Измерение давления и разрежения

Давлением называется величина, выражающая отношение силы к единице площади.

В международной системе единиц СИ за единицу давления принята сила в один ньютон, действующая на поверхность в 1 м², т. е. 1 Па (паскаль).

<u>Для технических измерений в виде исключения на</u> приборах <u>применяют следующие внесистемные</u> <u>единицы давления</u>.

- 1. Техническая атмосфера или килограммсила на квадратный сантиметр (кгс/см²).
- 2. Физическая атмосфера (кгс/см²).
- 3. Миллиметр ртутного столба (мм рт. ст).
- 4. Миллиметр водяного столба (мм вод. ст).

Переписать таблицу № 2 «Соотношения между единицами измерения давления» стр. 52 учебника Овчаренко В. М. в <u>тетрадь</u>

Виды давления

- = атмосферное (барометрическое), (p_6) ;
- ***** абсолютное, (p_a) ;
- ightharpoonup разрежение (при определенных значениях вакуум) $(p_{\rm a})$.

Барометрическое или атмосферное давление

Это давление окружающего воздуха (переменная величина).

С удалением от поверхности земли атмосферное давление снижается до глубокого вакуума.

Избыточное давление

Это разность между абсолютным давлением и барометрическим.

$$\boldsymbol{p} = \boldsymbol{p}_{\mathrm{a}} - \boldsymbol{p}_{\mathrm{b}}$$

Абсолютное давление

Это полное давление, под которым находится вещество (равное сумме барометрического и избыточного).

$$p_{\rm a} = p_{\rm 6} + p$$

Разрежением называют разность между барометрическим и абсолютным давлением.

$$\boldsymbol{p}_{\mathrm{p}} = \boldsymbol{p}_{\mathrm{f}} - \boldsymbol{p}_{\mathrm{a}}$$

Вакуум — глубокое разрежение (менее 66650 Па).

Приборы для измерения давления классифицируются по следующим признакам

По роду измеряемой величины: □ <u>барометры</u> — для измерения атмосферного давления; манометры, микроманометры, **напоромеры** — для измерения избыточного давления; **мановакуумметры** — для измерения избыточного давления и вакуума; **вакуумметры, тягомеры** — для измерения разрежения и вакуума; дифференциальные манометры — для

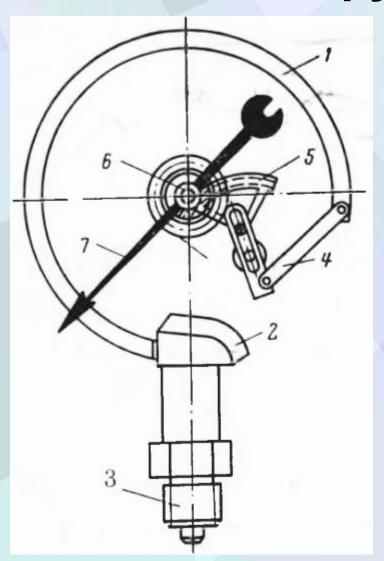
измерения разности давлений.

По принципу действия: **жидкостные**, пружинные, поршневые, радиоактивные, **пьезоэлектрические**, **при тензометрические.**

<u>На горно-буровых работах чаще применяют</u> пружинные и электрические манометры.

Пружинные манометры

Для измерения избыточного давления, разрежения и вакуума.


Они просты по устройству, дешевы и в обычных условиях работы надежны в эксплуатации.

Чувствительными элементами этих приборов могут быть: <u>серповидная трубчатая пружина</u> (трубка Бурдона), многовитковая трубчатая пружина (геликс) и мембраны.

Общий принцип действия пружинных манометров

Под действием измеряемого давления чувствительный элемент деформируется и посредством передаточно-множительного механизма деформация преобразуется в круговое движение стрелки вдоль шкалы. При этом перемещение стрелки будет деформации пропорционально чувствительного элемента, следовательно, и измеряемому давлению.

Манометр с серповидной трубчатой пружиной

Чувствительный элемент — трубчатая пружина — изготавливается из фосфористой (иногда бериллиевой) бронзы или латуни, а для давлений свыше 19,60 МПа — из стали.

Трубчатая пружина 1 одним концом впаяна в держатель 2, заканчивающийся ниппелем 3 с резьбой, а второй конец закрыт пробкой, запаян и шарнирно связан с передаточно-множительным механизмом.

В состав этого механизма входят поводок 4, сектор 5 и трибка 6, на ось которой одета стрелка 7. Для устранения «мертвых» ходов (люфтов) служит спиральная пружина.

Действие прибора

Основано на том, что полая трубчатая пружина, имеющая форму овала, под действием внутреннего давления стремится принять цилиндрическую форму и одновременно из серповидной стать прямолинейной.

Раскручиваясь, пружина посредством передаточно-множительного механизма воздействует на стрелку.

Класс точности рабочих манометров — 1,5; 2,5; 4.

Манометры для измерения давления газов по конструкции не отличаются от манометров для измерения давления жидкостей, но имеют некоторые особенности.

Один и тот же манометр нельзя использовать для измерения давления горючих и негорючих газов.

С этой целью <u>циферблаты манометров</u> окрашиваются в разные цвета, и на них делается надпись — название газа.

Манометры для измерения давления кислорода

Их тщательно обезжиривают, так как соединение масла с кислородом приводит к взрыву. На циферблате этих манометров делается надпись: «Кислород, маслоопасно».

Ваккумметры

Имеют конструкцию, аналогичную манометру с трубчатой пружиной. Могут быть:

- □ сильфонные
- □ мембранные

Конец пружины при измерении вакуума не раскручивается, а наоборот, закручивается.

Мановаккумметры

Измеряются давления больше и меньше атмосферного.

Правая часть делений шкалы такого прибора служит для измерения давления, а левая — для разрежения.

Электроконтактные манометры, Манометры с многовитковой трубчатой пружиной, Мембранные манометры.

(изучить самостоятельно, конспект стр. 54-57 учебника Овчаренко В. М.)

Электрические манометры

Созданы на основе изменения электрических параметров некоторых материалов под воздействием давления или путем преобразования механического воздействия измеряемой величины в электрический параметр при помощи специального преобразователя.

Под воздействием давления могут изменяться:

- ✓ активное сопротивление,
- ✓ магнитная проницаемость,
- **✓** индуктивность,
- **✓** <u>емкость,</u>
- ✓ электродвижущая сила (э. д. с.).

На одном из указанных принципов и может быть <u>создан</u> электрический манометр.

Электрический манометр — МИД (Магнитоупругий измеритель давления)

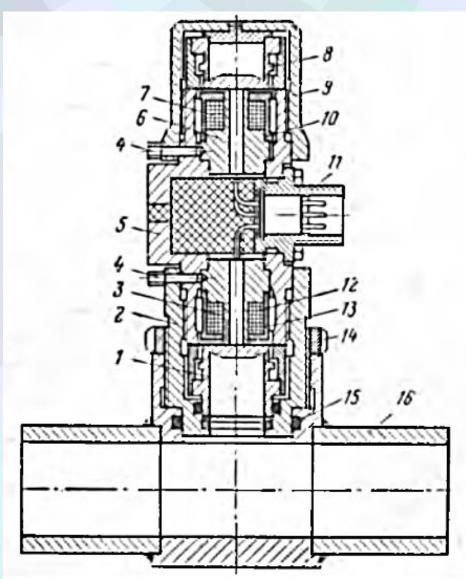
Основан на изменении магнитной проницаемости при изменении давления, т. е.

$$\mu = f(p)$$

Магнитоупругий измеритель давления

Прибор предназначен для визуального наблюдения за давлени ем промывочной жидкости при разведочном колонковом бурении.

Целесообразно его применять в тяжелых условиях работы:


- больших пульсациях жидкости,
- гидравлических перегрузках,
- **ВИбрациях,** (где обычные пружинные манометры оказываются малонадежными).

Надежность достигается благодаря применению магнитоупругого преобразователя, стойкого к гидравлическим перегрузкам в сочетании с особенностями электрической схемы вторичного прибора.

В состав прибора МИД входят:

- преобразователь,
- измерительный пульт,
- соединительный кабель,
- силовой кабель.

Преобразователь давления ДДП

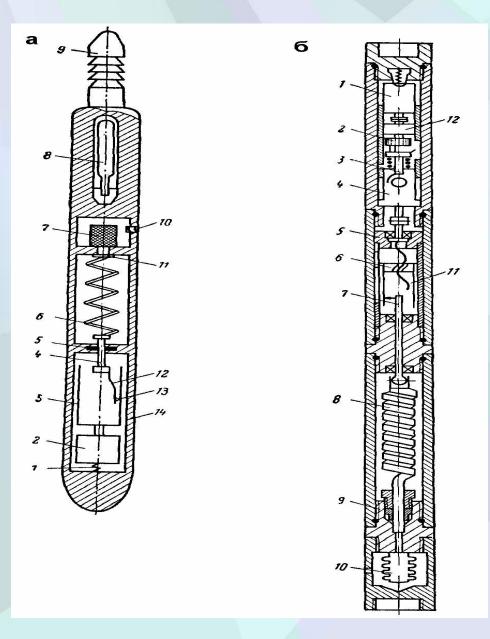
МИД ввинчивается в <u>тройник 16</u> нагнетательной магистрали и закрепляется <u>гайкой 14.</u>

Между гайкой и тройником помещается уплотнительное <u>кольцо 15.</u>

Магнитоупругий преобразователь состоит И3 чувствительного 3 и компенсационного **5. элементов**, запрессованных корпус В Магнитопроводы 10 и 13, внутри которых размещены катушки 7 и 12, соединены между собой дифференциально-трансформаторной подключены к штепсельному разъему торцам чувствительного и компенсационного элементов <u>гайками 2 и 9</u>, прижаты <u>сйльфоны 1 и 8</u>. Положение гаек фиксировано штифтами 4.

Самостоятельно составить конспект по принципиальной электрической схеме Измерителя МИД-1и заполнить таблицу 3 Техническая характеристика измерителей МИД-1, МИД-1А

стр. 58-59 учебника Овчаренко В. М.


СПЕЦИАЛЬНЫЕ МАНОМЕТРЫ, ПРИМЕНЯЕМЫЕ В БУРЕНИИ

Глубинные манометры

Применяют при бурении разведочных и эксплуатационных скважин на нефть и газ для замера и регистрации пластовых и забойных давлений.

Знание величин этих давлений позволяет решать следующие задачи:

- определить зависимость дебита от депрессии на забое;
- 2) исследовать явления взаимного влияния скважин и тем самым определить гидропроводимость пласта;
- 3) составить карты изобар, по которым возможно прогнозирование изменения давления в различных точках пласта;
- 4) решить вопрос о глубине отбора пробы нефти и др.

Рис. 1. Глубинный манометр:

а — поршневой: 1, 6 - пружины; 2 — часовой механизм; 3 — барабан; 4 — поршень; 5 — сальниковое уплотнение; 7 — фильтр; 8 — ртутный термометр; 9 — головка; 10 — канал; 11 — якорь; 12 — держатель; 13 — игла; 14— корпус прибора.

б — с трубчатой многовитковой пружиной: 1 — часовой привод механизма задержки; 2 — лимб установки времени задержки; 3 — стопор баланса часов; 4 — часовой механизм записи; 5 — каретка; 6 — барабан с диаграммным бланком; 7 — игла; 8 — пружина; 9 — узел уплотнения; 10 — сильфонный разделитель; 11— винт; 12 - редуктор