

Задача 1

Решите уравнение $\cos x = -\frac{1}{2}$.

Решение

$$x = \pm \arccos\left(-\frac{1}{2}\right) + 2\pi n, \quad n \in \mathbb{Z},$$

$$x = \pm \left(\pi - \frac{\pi}{3}\right) + 2\pi n,$$

$$x = \pm \frac{2\pi}{3} + 2\pi n.$$

$$Omsem: \pm \frac{2\pi}{3} + 2\pi n, \quad n \in \mathbb{Z}. \triangleleft$$

Комментарий

Поскольку $\left| -\frac{1}{2} \right| < 1$, то данное уравнение вида $\cos x = a$ имеет корни, которые можно найти по формуле (1).

Для вычисления $arccos\left(-\frac{1}{2}\right)$ можно воспользоваться формулой: $arccos\left(-a\right) = \pi - arccos a$. Тогда

 $\arccos\left(-\frac{1}{2}\right) = \pi - \arccos\left(\frac{1}{2}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$.

Задача 2

Решите уравнение $\cos x = \sqrt{2}$.

Решение

▶ Поскольку $|\sqrt{2}| > 1$, то корней нет.

Ответ: корней нет. <

Комментарий

Поскольку $|\sqrt{2}| > 1$, то данное уравнение не имеет корней (то есть формулу (1) нельзя применить).

Задача З

Решите уравнение $\cos 4x = \frac{1}{3}$.

Решение

 $4x = \pm \arccos \frac{1}{3} + 2\pi n, \quad n \in \mathbb{Z},$ $x = \pm \frac{1}{4} \arccos \frac{1}{2} + \frac{\pi n}{2}, \quad n \in \mathbb{Z}.$

Ответ:

$$\pm \frac{1}{4} \arccos \frac{1}{3} + \frac{\pi n}{2}, n \in \mathbb{Z}. \triangleleft$$

Комментарий

Поскольку $\left|\frac{1}{3}\right| < 1$, то можно воспользоваться формулой (1).

Учитывая, что $\arccos \frac{1}{3}$ не является табличным значением, для получения ответа достаточно после нахождения 4x по формуле (1) обе части последнего уравнения разделить на 4.

Задача 4 Решите уравнение $\cos\left(2x-\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}$.

Решение

$$2x - \frac{\pi}{3} = \pm \arccos \frac{\sqrt{2}}{2} + 2\pi n, \quad n \in \mathbb{Z},$$
$$2x - \frac{\pi}{3} = \pm \frac{\pi}{4} + 2\pi n,$$

$$x = \frac{\pi}{6} \pm \frac{\pi}{8} + \pi n, \ n \in \mathbb{Z}.$$

Omsem: $\frac{\pi}{6} \pm \frac{\pi}{8} + \pi n$, $n \in \mathbb{Z}$.

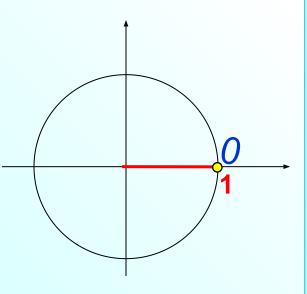
Комментарий

Поскольку $\left| \frac{\sqrt{2}}{2} \right| < 1$, то можно воспользоваться формулой (1) для нахождения значения выражения $2x - \frac{\pi}{3}$, стоящего под знаком косинуса. После этого из полученного линейного уравнения находим x.

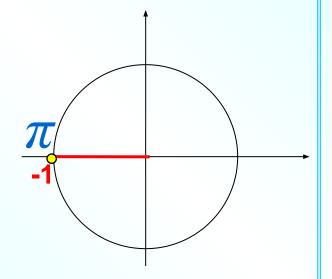
Обратите внимание, никаких х в ответе нет, тем более с индексами

Частные случаи

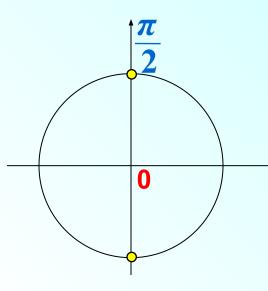
cosx = 1



cosx = -1



$$cosx = 0$$



$$x = 2\pi n, n \in \mathbb{Z}$$

$$x = \pi + 2\pi n, n \in \mathbb{Z}$$

$$x = \frac{\pi}{2} + \pi \, n, \ n \in \mathbb{Z}$$

Тренируемся решать:

1.
$$\cos 5x = 1$$

$$5x = 2\pi n, n \in \mathbb{Z}$$

$$x = \frac{2\pi}{5}n, n \in \mathbb{Z}$$

Ombem:
$$\frac{2\pi}{5}n, n \in \mathbb{Z}$$

Тренируемся решать:

$$\cos\left(x - \frac{\pi}{4}\right) = 0$$

$$\left(x - \frac{\pi}{4}\right) = \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$$

$$x = \frac{\pi}{2} + \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$$

$$x = \frac{3\pi}{4} + \pi n, n \in \mathbb{Z}$$

$$Omegan : \frac{3\pi}{4} + \pi n, n \in \mathbb{Z}$$