Java Core

Java 8. Features

Agenda

* Anonymous classes
* Default methods in interfaces
* Lambda expressions

* Functional Interfaces
* Method and Constructor References

* Lambda Scopes

= Accessing local variables
= Accessing fields and static variables
= Accessing Default Interface Methods

* Built-in Functional Interfaces

» Optional interface /()Java 8

softserve seir

Anonymous Inner Classes

= Anonymous inner class — class that has no
name and is used if you need to create a single
instance of the class.

= Any parameters needed to create an anonymous
object class, are given in parentheses following
name supertype:

new Supertype(list _of parameters) {
// body
}s

softserve seir

Anonymous Inner Class - Example

people.sort (| new Comparator<Person> () {

@Override
public int compare (Person pl, Person p2) {

return pl.getName () .compareTo (p2.getName ()) ;
}

Ho)o»

*new Ccreates an object

Comparator (...) begins definition of anonymous class
«Similar to

public class NameComparator implements Comparator<Person> ()
I AUCC \ 1 } IJCHIIID CIUOoO UCllIiiiiuivil i

softserve seir

Default Methods for Interfaces

= Java 8 enables us to add non-abstract method
implementations to interfaces by utilizing the default
keyword. This feature is also known as Extension Methods.

For example:
public interface Formula {
double calculate (int a);

default double sgrt (int a) {
return Math.sqgrt(a);

}

softserve seir

Default Methods for Interfaces

= Besides the abstract method calculate the interface Formula

also defines the default method sqrt.
= Concrete classes only have to implement the abstract method

calculate.
= The default method sqgrt can be used out of the box.

Formula formula = new Formula () {
@Override
public double calculate (int a) ({
return sqgrt(a * 100);
}
} i

formula.calculate (100) ; // 100.0
formula.sqgrt (16); // 4.0

softserve seir

Default Methods for Interfaces

= The formula is implemented as an anonymous object.

formula.calculate (100) ; // 100.0
formula.sqgrt (16); // 4.0

= As we'll see in the next section, there's a much nicer way of
implementing single method objects in Java 8.

softserve seir

Private methods for Interfaces

= From Java SE 9 on-wards, we can write private and private
static methods too in an interface using private keyword.

public interface Formula ({
private int pow(int a, int b) {
return (int)Math.pow(a, Db);
}

private static double getPI () {
return Math.PI;

}

default double circleArea (int radius) {
return Formula.getPI() * pow(radius, 2);

}
}

softserve e

Lambda expressions

= Sort a list of strings in prior versions of Java:

List<String> names = Arrays
.asList("Ivan", "Olexandra", "Anton", "Polina");

Collections.sort (names, new Comparator<String> () {
@Override
public int compare (String a, String b) {
return b.compareTo(a) ;
}
b))

softserve seir

Lambda expressions

= The static utility method Collections.sort
accepts a list and a comparator in order to sort the
elements of the given list.

= You often find yourself creating anonymous
comparators and pass them to the sort method.

softserve seir

Lambda expressions

= In Java 8 comes with a much shorter
syntax, lambda expressions

Collections.sort (names, |(String a, String b)

-> { return b.compareTo(a); }

) ;

softserve seir

Lambda expressions

= As you can see the code is much shorter and easier to
read. But it gets even shorter:

Collections.sort (names, (String a, String Db)
-> b.compareTo (a))

= For one line method bodies you can skip both the
braces { } and the return keyword. But it gets even
more shorter:

Collections.sort (names, (a, b) -> b.compareTo(a)):

= The java compiler is aware of the parameter types so
you can skip them as well.

softserve ssiee

Functional Interfaces

= How does lambda expressions fit into Javas type system? Each
lambda corresponds to a given type, specified by an interface. A
so called functional interface must contain exactly one abstract

method declaration.

= Each lambda expression of that type will be matched to this
abstract method.

= To ensure that your interface meet the requirements, you should
add the @FunctionalInterface annotation. The compileris

aware of this annotation and throws a compiler error as soon as
you try to add a second abstract method declaration to the

interface.

softserve seir

Functional Interfaces

For example,

@FunctionallInterface
interface Converter<ft, T> {
T convert (F from) ;

}

Converter<String, Integer> converter =
(from) -> Integer.valueOf(from);

Integer converted = converter.convert ("123");

System.out.println (converted) ; // 123

=Keep in mind that the code is also valid if the
@FunctionalInterface annotation would be omitted.

softserve e

Method and Constructor References

* The above example code can be further simplified
by utilizing static method references:

Converter<String, Integer> converter = Integer::valueOf;
Integer converted = converter.convert ("123");
System.out.println (converted) ; // 123

= Java 8 enables you to pass references to methods
or constructors via the : : expression. The above
example shows how to reference a static method.

softserve ssiee

Method and Constructor References

= \WWe can also reference instance methods:

class StringUtil {
char startsWith(String s) {
return Character.valueOf (s.charAt (0));
}
}

StringUtil strUtil = new StringUtil () ;

Converter<String, Character> converter = strUtil::startsWith;
char converted = converter.convert ("Java'") ;
System.out.println (converted) ; S/ T

softserve e

Method and Constructor References

= Let's see how the :: expression works for
constructors.

class Person {

String firstName;
String lastName;

Person () { }
Person (String firstName, String lastName) {

this.firstName = firstName;
this.lastName = lastName;

}

softserve seir

Method and Constructor References

= Next we specify a person factory interface to be used for
creating new persons:

interface PersonFactory<P extends Person> {
P create(String firstName, String lastName) ;

}

= Instead of implementing the factory manually, we glue
everything together via constructor references:

PersonFactory<Person> persontactory = Person::new;
Person person = personFactory.create ("Peter", "Parker");

= We create a reference to the Person constructor via
Person: :new. The compiler automatically chooses the right
constructor by matching the method signature create.

softserve seir

Lambda Scopes

= Accessing outer scope variables from lambda
expressions is very similar to anonymous objects.
You can now access “effectively final” variables
from outer scope as well as instance and static

fields.

= Lets consider
* Accessing local variables
* Accessing fields and static variables
* Accessing Default Interface Methods

softserve seir

Accessing local variables

= We can read final local variables from outer scope of lambda
expressions:
final int num = 1;
Converter<Integer, String> stringConverter =

(from) -> String.valueOf (from + num) ;
stringConverter.convert 2) ; //3

= As well as in anonymous objects the variable num is not required to be
final. This code is also valid:
int num = 1;
Converter<Integer, String> stringConverter =

(from) -> String.valueOf(from + num);
stringConverter.convert 2) ; //3

= However num must be effectively final for the code to compile. The
following code does not compile:

int num = 1;
Converter<Integer, String> stringConverter =
(from) -> String.valueOf (from + num) ;

softservegesire | num = 3;

Accessing fields and static variables

= We also have both read and write access to instance fields
and static variables from within lambda expressions.

class Test {
static int outerStaticNum;
int outerNum;

void testScopes () {

Converter<Integer, String> stringConverterl = (from) ->
outerNum = 23;
return String.valueOf (from);

} i

Converter<Integer, String> stringConverter?2 = (from) ->
outerStaticNum = 72;
return String.valueOf (from);

b g
}

softserve e

{

{

Accessing Default Interface Methods

= Interface Formula defines a default method sgqrt which
can be accessed from each formula instance including

anonymous objects.

public interface Formula ({
double calculate (int a);

default double sqgrt(int a) {
return Math.sqgrt(a);

}
}

= But, default methods cannot be accessed from within
lambda expressions. The following code does not compile:

Formula formula = (a) ->|sgqrt(a * 100)|;

softserve seir

Built-in Functional Interfaces

= The JDK 1.8 API contains many built-in functional
interfaces. Some of them are well known from
older versions of Java
like Comparator or Runnable.

= Those existing interfaces are extended to enable
Lambda support via the @FunctionalInterface
annotation.

= But the Java 8 APl is also full of new functional
interfaces to make your life easier which contains
in package java.util.function

softserve e

Predicates

= Predicates are boolean-valued functions of one
argument. The interface contains various default
methods for composing predicates to complex
logical terms (and, or, negate)

public interface Predicate<T> {

boolean test (T t);

softserve ssiee

Functions

= Functions accept one argument and produce
result. Default methods can be used to chain
multiple functions together(compose, andThen).

public interface Function<T, R> {

R apply (T t);

softserve ssiee

Suppliers

= Suppliers produce a result of a given generic type.
Unlike Functions, Suppliers don't accept
arguments.

public interface Supplier<T> {

T get():;

softserve seir

Consumers

= Consumers represents operations to be performed
on a single input argument.

public interface Consumer<T> ({

void accept (T t);

softserve seir

Optionals

= Optionals are not functional interfaces, instead it's a nifty utility to
prevent NullPointerException.

= Optional is a simple container for a value which may be null or
non-null.

= Think of a method which may return a non-null result but
sometimes return nothing. Instead of returning null you return
an Optional in Java 8.

Optional<String> optional = Optional.of("Java");

optional.isPresent () ; // true
optional.get () ; // "Java'"
optional.orElse ("fallback") ; // "Java"
optional.ifPresent ((s) ->

System.out.println(s.charAt(0))); // "J"
softserve g

serveniee

The end

USA HQ
Toll Free: 866-687-3588
Tel: +1-512-516-8880

Ukraine HQ
Tel: +380-32-240-9090

Bulgaria
Tel: +359-2-902-3760

