
Good morning!
Доброе утро!

早上好!

Lecture2.  Data Structures in Python for Data analysis



我们会成功 

We will succeed ! 

У нас все получится [U nas vse poluchitsya ] !

Без булдырабыз! 
☺

Lecture2.  Data Structures in Python for Machine learning



. 

Lecture3. 
Data preproccessing and 
machine learning with 
Scikit-learn



Извлечение признаков и масшатбирование, 
будущая выборка, уменьшение размерности 
выборки



Training set and testing set

• Machine learning is about learning some properties of a data set and 
then testing those properties against another data set.

•  A common practice in machine learning is to evaluate an algorithm 
by splitting a data set into two. 

• We call one of those sets the training set, on which we learn some 
properties; we call the other set the testing set, on which we test the 
learned properties.



Reading a Dataset 





Data Description :
Attribute Information:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm

Class: 
-- Iris Setosa
-- Iris Versicolour
-- Iris Virginica 



• A basic table is a two-dimensional 
grid of data, in which the rows 
represent individual elements of 
the dataset, and the columns 
represent quantities related to 
each of these elements. 

• For example, consider the Iris 
dataset

Here each row of the data refers to a single observed 
flower, and the number of rows is the total number of 
flowers in the dataset. In general, we will refer to the 
rows of the matrix as samples, and the number of rows 
as n_samples.
The samples (i.e., rows) always refer to the individual 
objects described by the dataset. For example, the 
sample might be a flower, a person, a document, an 
image, a sound file, a video, an astronomical object, or 
anything else you can describe with a set of 
quantitative measurements.



Target array
In dataset we also work with 
a label or target array, which by convention we will 
usually call y. 
The target array is usually one dimensional, with 
length n_samples. The target array may have 
continuous numerical values, or discrete 
classes/labels. 
The distinguishing feature of the target array is 
that it is usually the quantity we want to predict 
from the data: in statistical terms, it is the 
dependent variable. For example, in the 
preceding data we may wish to construct a model 
that can predict the species of flower based on the 
other measurements; in this case, 
the species column would be considered the target 
array.



•Basic Data Analysis :

• The dataset provided has 150 rows

•Dependent Variables : Sepal length.Sepal Width,Petal length,Petal 
Width

• Independent/Target Variable : Class

• Missing values : None



•The dataset is divided into 

Train and Test data 

with 80:20 split ratio 

where 80% data is training data where as 
20% data is test data.



•Each training point belongs to one of N different 
classes. 

•The goal is to construct a function which, given a 
new data point, will correctly predict the class to 
which the new point belongs.

Classification: samples belong to two or more 
classes and we want to learn from already labeled 
data how to predict the class of unlabeled data.



What is scikit-learn?

•
The scikit-learn library provides an 
implementation of a range of algorithms for 
Supervised Learning and Unsupervised Learning.



You can watch the Pandas and scikit-learn 
features documentation on this site.

• https://pandas.pydata.org/pandas-docs/stable/

https://scikit-learn.org/stable/documentation.html



Preprocessing Data: missing data

• Real world data is filled with missing values. 

• You will often need to rid your data of these missing values in order to 
train a model or do meaningful analysis. 

• What follows are a few ways to impute (fill) missing values in Python, 
for both numeric and categorical data.





Method 1: Mean or Median

• A common method of imputation with numeric features is to replace 
missing values with the mean of the feature’s non-missing values. If 
the data have outliers, you may want to use the median instead. 
Either method is easy in Pandas:

df_mean_imputed = df.fillna(df.mean()) 
df_median_imputed = df.fillna(df.median()) 





Imputation Method 2: Zero

• Depending on where your data are coming from, a missing value may 
be better represented by the number zero. Replacing missing values 
with zeros is accomplished similar to the above method; just replace 
the mean function with zero.





Imputation for Categorical Data

•For categorical features, using mean, median, or 
zero-imputation doesn’t make much sense. Here 
I’ll create an example dataset with categorical 
features and show two imputation methods 
specific to this type of data.





Imputation Method 1: Most Common Class

• One approach to imputing categorical features is to replace missing 
values with the most common class. You can do with by taking the 
index of the most common feature given in Pandas’ value_counts 
function.

# for each column, get value counts in decreasing order and take the index (value) of most 
common class
df_most_common_imputed = colors.apply(lambda x: x.fillna(x.value_counts().index[0]))





Imputation Method 2: “Unknown” Class

• Similar to how it’s sometimes most appropriate to impute a missing 
numeric feature with zeros, sometimes a categorical feature’s 
missing-ness itself is valuable information that should be explicitly 
encoded. If this is the case, most-common-class imputing would cause 
this information to be lost. Instead, just replace those values with a 
value like “Unknown” or “Missing.”

• df_unknown_imputed = colors.fillna("Unknown")





Column-Specific Imputation Rules

• You can combine any of the above methods by imputing specific 
columns rather than the entire dataframe. Returning to the numeric 
example, we can mean-impute X1 and median-impute X2 by 
specifying the column(s) to be imputed.

• # replace missing values with the column mean



Preprocessing Data
If data set are strings
• We saw in our initial exploration that most of the columns in our data 

set are strings, but the algorithms in scikit-learn understand only 
numeric data. Luckily, the scikit-learn library provides us with many 
methods for converting string data into numerical data. One such 
method is the LabelEncoder() method. We will use this method to 
convert the categorical labels in our data set like ‘won’ and ‘loss’ into 
numerical labels. To visualize what we are trying to to achieve with 
the LabelEncoder() method let’s consider the images below.



• The image below represents a dataframe that has one column named ‘color’ and 
three records ‘Red’, ‘Green’ and ‘Blue’.

• Since the machine learning algorithms in scikit-learn understand only numeric 
inputs, we would like to convert the categorical labels like ‘Red, ‘Green’ and ‘Blue’ 
into numeric labels. When we are done converting the categorical labels in the 
original dataframe, we would get something like this



#import the necessary module

from sklearn import preprocessing

# create the Labelencoder object

le = preprocessing.LabelEncoder()

#convert the categorical columns into numeric

encoded_value = le.fit_transform(["paris", "paris", "tokyo", "amsterdam"])

print(encoded_value)

he LabelEncoder() method assigns the numeric values to the classes in the order of the first letter of 
the classes from the original list: “(a)msterdam” gets an encoding of ‘0’ , “(p)aris gets an encoding of 1” 
and “(t)okyo” gets an encoding of 2.



Training Set & Test Set

• A Machine Learning algorithm needs to be trained on a set of data to 
learn the relationships between different features and how these 
features affect the target variable. 

• For this we need to divide the entire data set into two sets. 

• One is the training set on which we are going to train our algorithm to 
build a model.

•  The other is the testing set on which we will test our model to see 
how accurate its predictions are.



But before doing all this splitting, let’s first separate our features and 
target variables. 

#import the necessary module

from sklearn.model_selection import train_test_split

#split data set into train and test setsdata_train, data_test, 

target_train, target_test = train_test_split(data, target, test_size = 0.30)

we used the train_test_split() method to divide the data into a training set (data_train,target_train) and a test set 
(data_test,data_train). The first argument of the train_test_split() method are the features that we separated out in the 
previous section, the second argument is the target(‘Opportunity Result’). The third argument ‘test_size’ is the 
percentage of the data that we want to separate out as training data .



Watch subtitled video
• https://www.coursera.org/lecture/machine-learning/what-is-machin

e-learning-Ujm7v







CHECK


