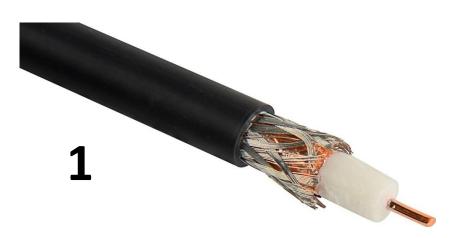
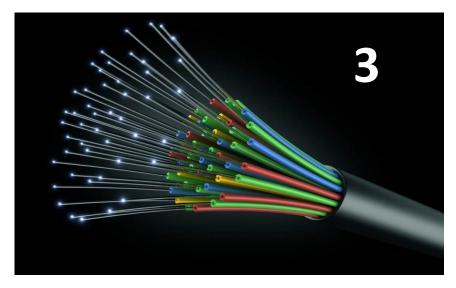


Сетевая плата, также известная как **сетевая карта**, **сетевой адаптер**, **Ethernet-адаптер**, **NIC** (<u>англ.</u> *network interface card*) — периферийное устройство, позволяющее <u>компьютеру</u> взаимодействовать с другими устройствами <u>сети</u>.


Сетевые адаптеры предназначены для сопряжения сетевых устройств со средой передачи с соответствии с принятыми прасилами обмена информацией. Сетевым устройством может быть компьютер пользователя, сетевой сервер, рабочая станция и т.д. Набор выполняемых адаптером функций зависит от конкретного сетевого протокола. Ввиду того, что сетевой адаптер и в физическом, и в логическом смысле находится между устройством и сетевой средой, его функции можно разделить на функции сопряжения с сетевым устройством и функции обмена с сетью.

Соединительные кабели


1. Коаксиальный кабель (скорость до 10 Мбит/с);

2. «Витая пара» (скорость до 100 Мбит/с);

3. Оптоволокно (скорость до 1000 Мбит/с).

Волоконнооптический кабель (также оптов олоконный или оптиковолоконный кабель) — кабель на основе волоконных световодов, предназначенный для передачи оптических сигналов в линиях связи, в виде фотонов (света)...

Адаптеры Ethernet представляют собой плату, которая вставляется в слот системной платы компьютера. Чаще всего адаптеры Ethernet имеют для связи с сетью два внешних разъема: для коаксиального кабеля (разъем BNC) и для кабеля на витой паре. Наличие двух внешних разъемов позволяет работать по выбору в сети с "тонким" Ethernet или с витой парой. Для выбора типа кабеля применяются перемычки или переключатели, которые устанавливаются перед подключением адаптера к сети. Для подключения витой пары может использоваться 15-контактный разъем AUI или 8-контактный

RJ-45.

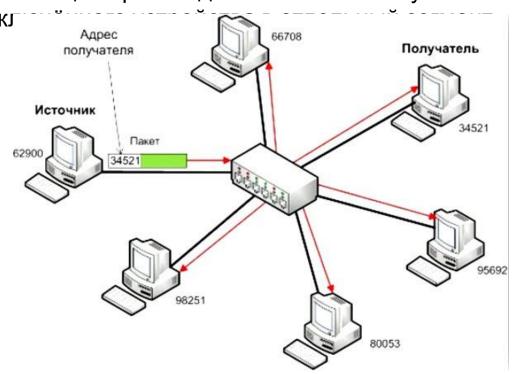
Повторитель (жарг. — рипитр, репитер; <u>англ.</u> repeater) сетевое оборудование. Предназначен для увеличения расстояния сетевого соединения путём повторения электрического сигнала «один в один». Бывают однопортовые повторители и многопортовые.

Проблема не нова, и в таких ситуациях применяют не усиление, а повторение сигнала. При этом устройство на входе должно принимать сигнал, далее распознавать его первоначальный вид, и генерировать на выходе его точную копию. Такая схема в теории может передавать данные на сколь угодно большие расстояния (если не учитывать особенности разделения физической среды в Ethernet).

Узел 1 Узел 2

Узел N

Принцип работы


Концентратор повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключённые к концентратору устройства находятся в одном домене коллизий.

В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы — устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём

логического выделения каждого подкл

домен коллизии.

Концентратор хорошо работает в локальной сети, содержащей до 5 узлов.

Принцип работы для «чайников»

Хаб работает по следующему принципу: копирует все полученные пакеты во все порты. При этом может возникнуть проблема, при которой по двум и более портам приходят пакеты в одно и то же время. Другая проблема — безопасность — все пакеты доходят до всех компьютеров сети, поэтому существует возможность несанкционированного доступа к информации. И, наконец, ещё одной проблемой является то, что копирование пакетов повышает нагрузку на сеть, причём весьма существенно — весь трафик сегмента сети поступает к каждому из компьютеров и тем самым загружает сеть.

Kommytatop bl

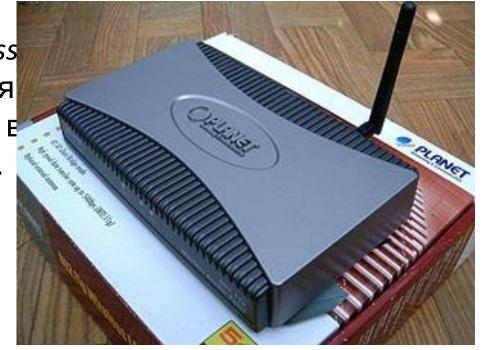
Коммутатор может объединять узлы одной сети по их МАС-адресам.

Принцип работы коммутатора

Коммутатор хранит в памяти таблицу коммутации, в которой указывается соответствие МАС-адреса узлов подключённых к коммутатору. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры (фреймы) и, определив МАС-адрес хоста-отправителя, заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, МАС-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если МАС-адрес хоста-получателя не ассоциирован с каким-либо портом коммутатора, то кадр будет отправлен на все порты. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется. Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса.

Маршрутизатор

Маршрутизатор (<u>проф. жарг.</u> раутер или рутер (от


англ. router /ˈɹu:tə(ɹ)/ или
/ˈɹaʊtə-/, /ˈɹaʊtəɹ/)^[1], часто
ро́утер (искажённое
произношение англ. router) —
сетевое устройство,
пересылающее пакеты данных
между различными
сегментами сети.

Роутер – переводит протоколы глобальной сети (IP) в протоколы локальной сети (TCP) и обратно.

Беспроводная точка доступа

Беспроводная точка доступа (<u>англ.</u> *Wireless Access Point,* WAP) — устройство для объединения <u>компьютеров</u> е единую беспроводную <u>сеть</u>.

Объединение компьютеров в проводную сеть обычно требует прокладки множества кабелей через стены и потолки. Также проводные сети накладывают определённые ограничения на расположение устройств в пространстве. Этих недостатков лишены беспроводные сети: можно добавлять компьютеры и прочие беспроводные устройства с минимальными физическими, временными и материальными затратами. Для передачи информации беспроводные точки доступа используют радиоволны из спектра частот, определённых стандартом IEEE 802.11.

Использование

Чаще всего беспроводные точки доступа используются для предоставления доступа мобильным устройствам (ноутбуки, принтеры и т.д.) к стационарной <u>локальной сети</u>.

Также беспроводные точки доступа часто используются для создания так называемых «горячих точек» — областей, в пределах которых клиенту предоставляется, как правило, бесплатный доступ к сети Интернет. Обычно такие точки находятся в библиотеках, аэропортах, уличных кафе крупных городов.

В последнее время наблюдается повышение интереса к беспроводным точкам доступа при создании домашних сетей. Для создания такой сети в пределах одной квартиры достаточно одной точки доступа. Возможно, этого будет достаточно для включения в сеть и соседей прилегающих квартир. Для включения в сеть квартиры через одну, определенно, потребуется ещё одна точка доступа, которая будет служить ретранслятором сигнала, ослабевшего вследствие прохождения через несущую стену.

Модем

Модем (акроним, составленный из слов модулятор и демодулятор) — устройство, применяющееся в системах связи для физического сопряжения информационного сигнала со средой его распространения, где он не может существовать без адаптации (то есть переносе его на несущую с модуляцией), и выполняющее функцию модуляции и

демодуляции этого сигнала (чаще всего в

Междуватод вакодемее фсуществляет модуляцию несущего сигнала, то есть изменяет его характеристики в соответствии с изменениями входного информационного сигнала, демодулятор — осуществляет обратный процесс. Модем выполняет функцию оконечного оборудования линии связи. Само формирование данных для передачи и обработки принимаемых данных осуществляет т. н. терминальное оборудование (в его роли может выступать и персональный компьютер). Модемы широко применяются для связи компьютеров (одно из их периферийных устройств), позволяющее одному из них связываться с другим (также оборудованным модемом) через телефонную сеть (телефонный модем) или кабельную сеть (кабельный модем). Также модемы ранее применялись в сотовых телефонах (пока не были вытеснены цифровыми способами передачи данных).

История

Компания <u>AT&T</u> Dataphone Modems в Соединённых Штатах была частью <u>SAGE</u> (<u>ПВО</u> системы) в 50-х годах. Она соединяла <u>терминалы</u> на различных воздушных базах, <u>радарах</u> и контрольных центрах с командными центрами <u>SAGE</u>, разбросанными по <u>США</u> и <u>Канаде</u>. <u>SAGE</u> использовала выделенные линии связи, но устройства на каждом из концов этих линий были такими же по принципу как современные модемы.

Первым модемом для <u>персональных</u> компьютеров стало устройство компании <u>Hayes Microcomputer Products</u>, которая в <u>1979 году</u> выпустила Micromodem II для персонального компьютера <u>Apple II</u>. Модем стоил 380 долл. и работал со скоростью 110/300 б/сек.

В <u>1981 году</u> фирма Hayes выпустила модем Smartmodem 300 б/сек, система команд которого стала <u>стандартом дефакто</u>

