

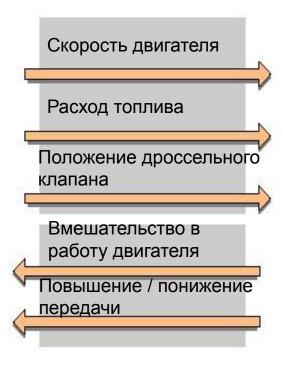
Добро пожаловать на Курс обучения АТВ 741 Р.1 Базовая информация о системах шин данных

Содержание

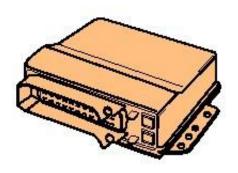
- Связь / передача данных в автомобиле
- Причины использования систем шин?
 - Протокол передачи данных
- Какие системы шин используются на автомобилях Audi?
- Шлюз
 - План организации сети / топология блоков управления
- Тестирование связи
- Работа с автомобилями, оснащенными сетью
- Выводы

Базовая информация о системах шин данных Задачи курса

- Участник может объяснить, что включено в систему передачи данных в автомобиле.
- Участники могут описать компоненты и указать причины использования системы шины данных
- Участник может объяснить структуру протокола передачи данных.
- Участник может указать системы шин данных, используемых на автомобилях Audi.
- Участник в состоянии объяснить задачи шлюза и значение терминологии монтажного перечня шлюза.
- Участник может создать план организации сети с помощью сервисной литературы.
- Участник в состоянии проверить наличие связи между различными блоками управления с помощью автомобильного диагностического тестера.
- Участник может перечислить требования, которые следует выполнять при выполнении работ на автомобилях, оснащенных сетью.

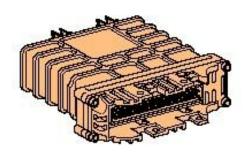

Связь / передача данных в автомобиле

Первый возможный способ передачи данных:


Обмен каждым битом информации выполняется по отдельной линии.

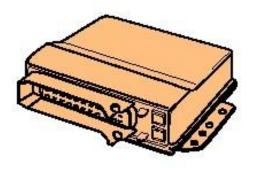
Блок управления двигателем J623

Блок управления автоматич. КПП J217



Связь / передача данных в автомобиле

Второй возможный способ передачи данных:


Для обмена всей информацией между блоками управления используются две линии, линии шины данных.

Блок управления двигателем J623

Скорость двигателя
Расход топлива
Положение дроссельного клапана
Вмешательство в работу двигателя
Повышение / понижение
передачи

Блок управления автоматич. КПП J217

Связь / передача данных в автомобиле

Из чего состоит система шины данных?

Система шины данных состоит из следующих компонентов:

- **контроллер** в блоке управления предоставляет данные для отправки
- **приемопередатчик** в блоке управления отправляет или передает данные
- **Линии шины данных** одна или две электрические линии (медные) или оптоволоконные кабели (пластик или стекло)
- **Концевые резисторы** (обычно в блоках управления) только в системах шин с электрической проводкой
- **Передающие и принимающие диоды** в блоках управления только с оптоволоконными кабелями (оптические системы)

Связь / передача данных в автомобиле

Как передаются данные?

Информация или сообщения преобразуются в биты и байты в блоках управления.

Бит представляет собой самую малую единицу цифровой информации (1 рабочее состояние на блок в секунду) и может принимать только значение "0" или "1".

Поэтому сообщение представляет собой строку из множества бит.

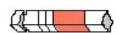
Для отправки сообщения между блоками управления, в электрических системах шины, величинам "0" или "1" назначаются напряжения (например, "0" = высокое напряжение и "1" = низкое напряжение)

В системах оптической шины, величины "0" и "1" могут определяться как "включение света" и "выключение света" соответственно.

Причины использования систем шин

Преимущества систем шин данных

- Для дополнения протокола передачи данных дополнительной информацией, необходимо только изменение программного обеспечения.
- Низкое соотношение ошибок достигается непрерывной проверкой информации, отправляемой блоками управления и включением дополнительной защиты в протоколы передачи данных.
- Благодаря многоцелевому использованию сигналов датчиков, количество необходимых датчиков и сигнальных линий сокращено.
- Возможно достижение очень высокой скорости передачи данных между блоками управления.
- Обеспечивается экономия места благодаря использованию блоков управления и разъемов блоков управления меньшего размера.


Системы шин данных стандартизированы во всем мире. Это означает возможность их использования для обмена данными между блоками управления разных производителей.

Протокол передачи данных

Пример структуры протокола передачи данных

Поле конца блока данных завершает протокол передачи

Протокол передачи данных

Проверка протокола передачи данных

Проверка протокола передачи данных на ошибки передачи выполняется принимающими блоками управления. Если протокол передачи данных передан неправильно, он отмечается как неправильный и отбрасывается.

Определение правильности величины, передаваемой протоколом передачи данных не возможно.

Пример: Блок данных в системе управления двигателем указывает, что температура охлаждающей жидкости составляет 70°C, и на панели приборов также отображается 70°C, при этом охлаждающая жидкость уже кипит.

В таком случае, протокол передачи данных между вставкой панели приборов и блоком управления двигателем исправен, однако передается неправильная величина. Неисправность может быть обнаружена в области датчика/проводки.

Какие системы шин используются на автомобилях Audi?

CAN Controller Area Network

В случае шины **CAN**, для передачи данных используются **два** свитых медных провода. Эти линии называют CAN High и CAN Low.

Отличают высокоскоростные и низкоскоростные системы. Высокоскоростные системы обеспечивают передачу данных на скоростях до 500 кбит/с

, а низкоскоростные системы - 100 кбит/с.

Все пользователи шины **CAN** представляют собой независимые блоки управления с собственным адресным словом в автомобильном диагностическом тестере и могут передавать сообщения по линиям шины в соответствии с приоритетом. Переданные данные могут также быть считаны другими блоками управления соответствующей системы шины.

Блоки управления в шине **CAN** размещены линейно.

Какие системы шин используются на автомобилях Audi?

CAN Controller Area Network

Высоко-скоростные системы (500 кбит/с) макс. 10 блока управления Не предусматривает однопроводную функцию	Низко-скоростные системы (100 кбит/с) макс. 24 блока управления Предусматривает однопроводную функцию
САN двигательной установки (например, блок управления двигателем)	САN элементов комфорта (например, блок управления бортовым питанием)
САN панели приборов/подв. (например, вставка панели приборов)	САN информационно-развлекательной системы (например, радио)
Расширенная CAN (например, система Lane Change Assist)	
Диагностическая CAN (диагностический порт)	

Какие системы шин используются на автомобилях Audi?

LIN Local Interconnect Network

В случае шины **LIN** для передачи данных используется **один** медный провод. Максимальная скорость передачи данных составляет 20 кбит/с.

Система шины **LIN** в основном состоит из ведущего блока управления **LIN** и до 16 ведомых блоков управления LIN.

Ведущий блок **LIN** запрашивает данные от ведомых блоков управления и подает команды на определенные действия.

Только ведущий блок **LIN** имеет адресное слово в автомобильном диагностическом тестере и выполняет диагностику подключенных ведомых блоков управления.

Ведущий блок управления подключен к шине **CAN** для связи с другими автомобильными блоками управления.

Какие системы шин используются на автомобилях Audi?

MOST Media Oriented Systems Transport

Шина **MOST** представляет собой оптическую систему шины, то есть, данные передаются через оптоволоконные кабели в форме световых сигналов.

Данная система шины особенно хорошо подходит для информационно-развлекательных систем, благодаря своей высокой скорости передачи данных до 22,5 Мбит/с.

Блоки управления в шине **MOST** расположены концентрически, то есть, в случае отказа блока управления или оптоволоконного кабеля, передача данных в этой системе шины окажется невозможной.

Какие системы шин используются на автомобилях Audi?

Bluetooth

Система Bluetooth представляет собой беспроводную систему передачи данных со скоростью передачи до 3 Мбит/с и ограниченной дальностью приблизительно до 10 метров.

Возможно подключение до 8 пользователей.

Bluetooth в основном используется для соединения мобильных телефонов, коммуникаторов и т.д. с информационно-развлекательной системой.

Какие системы шин используются на автомобилях Audi?

Пример: Модель Audi A4 2008 года

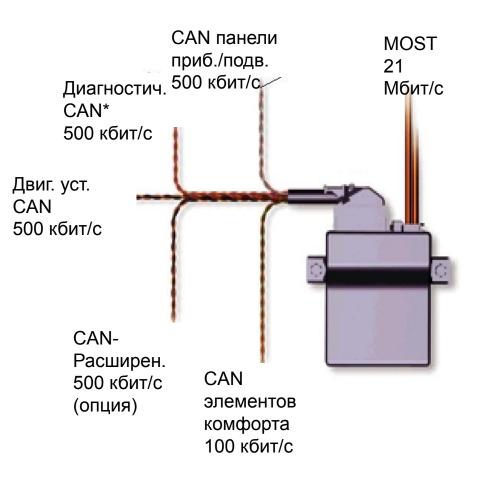
Шина	Пере	едача	Линия	Цвет кабеля
Диагностич. CAN	 *	электрич.	2 провода,	витые high оранж./красн.; low оранж./коричн.
Двиг. уст. CAN	элект	рич.	2 провода, витые	high оранж./черн.; low оранж./коричн.
CAN пан. приб./п	юдв.	электрич.	2 провода,	витые high оранж./син.; low оранж./коричн.
САN эл. комфор	га	электрич.	2 провода,	витые high оранж./зел.; low оранж./коричн.
CAN-Расширен. электрич.		2 провода, витые high оранж./сер.; low оранж./коричн.		
CAN инфразвл.	С-МЫ	электрич.	2 провода,	витые high оранж./красн.; low оранж./коричн.
или шина MOST оптич.		Оптоволокон. каб	бель оранж. (стандарт); желтый (KD)	
Шина LIN (множе	еств)	электрич.	1 пров.	красн. или красн./XX
Bluetooth	Ради	оволны	Беспроводн.	

^{*}В случае неисправности данной системы шины, автомобильный диагностический тестер не сможет обмениваться данными с автомобилем.

Шлюз необходим, потому что разные системы шины используют разные режимы передачи и разные скорости.

Шлюз, подключенный ко всем системам шины, "переводит" протоколы передачи данных и, таким образом, обеспечивает передачу данных от одной системы шины к другой.

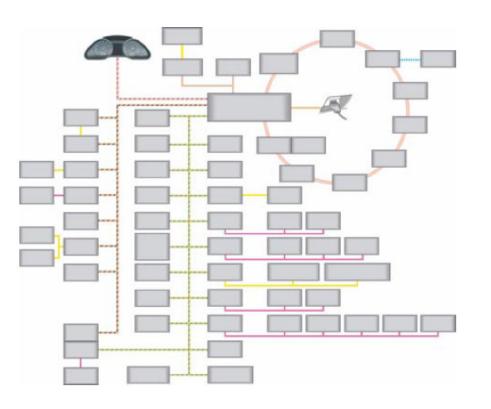
Шлюз также указывает какие данные использовать для обмена между разными системами шин, т.е. выполняет функцию "фильтра".


В первых полностью оснащенных сетью автомобилях Audi (Audi A2 и Audi A4'01), шлюз был интегрирован во вставку панели приборов или допускал выполнение функции шлюза.

Audi A8′03 стал первым автомобилем Audi, оснащенным интерфейсом диагностики шины данных, то есть, в таком случае, для шлюза был предусмотрен отдельный блок управления, подключенный ко всей остальной системе шин.

Официальный термин: диагностический интерфейс шины данных J 533 (обычно называемый шлюзом)

Адресное слово в автомобильном диагностическом тестере: 19


Пример: Модель Audi A4 2010 года

- соединение всех систем шин
- "перевод" протоколов передачи данных
- выполнение функций "фильтра"
- подключен к интерфейсу диагностики
- Адресное слово "19"
- подключен только к блокам управления, то есть, к шлюзу не подключаются датчики или привода
- Ведущий блок LIN для: генератора переменного тока, аккумуляторной батареи, блока управления монитором и преобразователя напряжения

План организации сети / топология блоков управления

- -предоставление общих данных о системах шин соответствующего автомобиля
- предоставление общих данных о всех бортовых блоках управления подключенных к системе шины (полные характеристики)
- отображение обмена данными диагностического тестера с блоками управления

План организации сети / топология блоков управления / практическое занятие 1

Все автомобили для обучения
Определить, какой блок управления установлен на учебном автомобиле
Создать план организации сети для учебного автомобиля.
Присвоить имена блокам управления и линиям шины передачи данных.
Представить свои результаты.
ELSA
Автомобильный диагностический тестер
Коммутационная панель
Карты мастерской
Контакты
Создание плана организации сети: 60 мин.
Представление результатов: 10 мин.

Тестирования связи / упражнение 2

Автомобиль	Все автомобили для обучения	
Практическое занятие	С помощью автомобильного тестера данных автомобиля, выполнить	
	чтение блоков данных в диагностическом интерфейсе шины данных Ј533.	
	Какую информацию можно получить из	
	блоков данных?	
	Выключить зажигание.	
	Продолжает ли считываться информация с блоков	
	данных и, если да, то какая?	
Инструмент и оснастка	Автомобильный диагностический тестер	
Время	20 минут	

Тестирования связи / упражнение 3

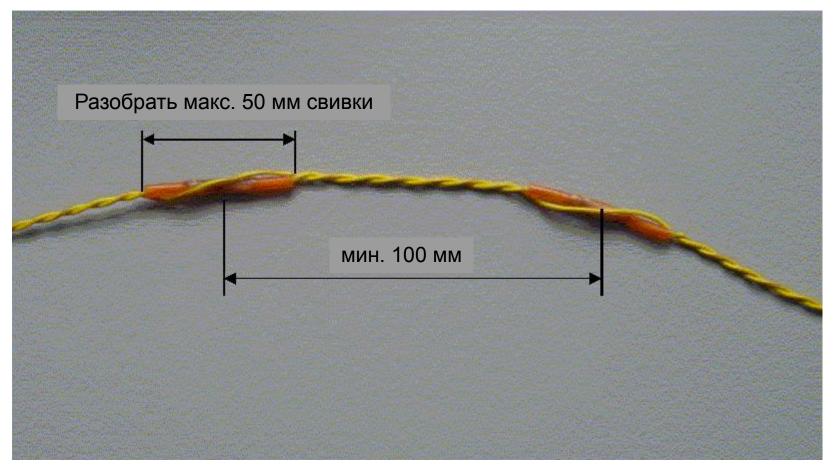
Автомобиль	Все автомобили для обучения	
Практическое занятие	С помощью автомобильного тестера данных вывести данные монтажного	
	перечня шлюза в режиме самодиагностики.	
	Определить, какие термины могут быть отображены после определений блока управления	
	и что они означают.	
Инструмент и оснастка	Автомобильный диагностический тестер	
Время	30 минут	

Работа с автомобилями, оснащенными сетью / упражнение 4

Автомобиль	Все автомобили для обучения
Практическое занятие	Кратковременно включить и выключить зажигание.
	Подождать около 30 секунд.
	Отключить подключаемый разъем от блока управления двигателем и блока управления двери водителя приблизительно на 30 секунд.
	Повторно подключить блоки управления.
	Включить зажигание и прочитать содержимое памяти отказов
	всех блоков управления.
	Какие результаты ожидались? Что было замечено?
Инструмент и оснастка	Автомобильный диагностический тестер
Время	20 минут

Работа с автомобилями, оснащенными сетью

Линии шины CAN


В случае шины CAN, обе линии (CAN High и CAN Low) свиты вместе для защиты от электромагнитных помех.

При ремонте линий шины CAN, необходимо выполнять следующие требования:

- Используйте набор для ремонта жгутов проводов VAS 1978 В
- Разобрать свивку проводов на минимально возможную длину (макс. 50 мм)
- Соблюдайте минимальное смещение в 100 мм между ремонтируемыми участками отдельных линий
- В случае обширных повреждений, используйте ремонтную линию CAN из каталога деталей

Работа с автомобилями, оснащенными сетью

Линии шины CAN / ремонт

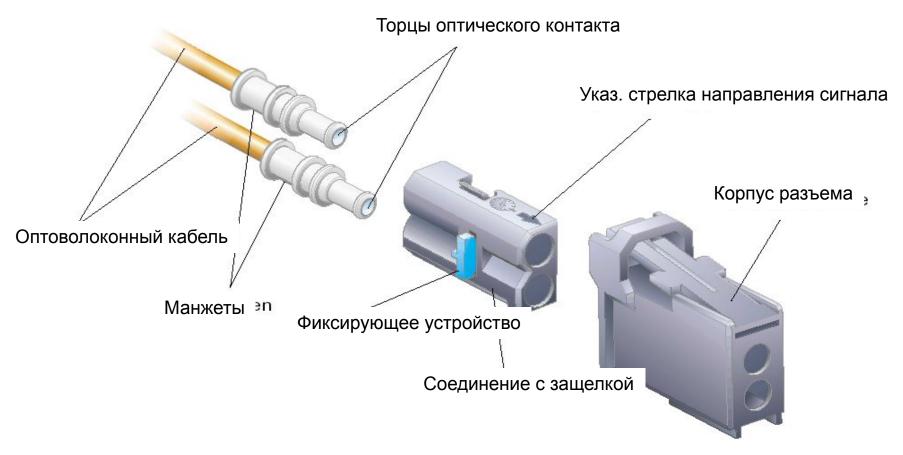
Работа с автомобилями, оснащенными сетью

Оптоволоконный кабель

Оптоволоконные кабели должны быть защищены от:

- Чрезмерно высоких температур (например, при сварке)
- Переломов, изгибов
- Загрязнения
- Царапин

Работа с автомобилями, оснащенными сетью


Оптоволоконный кабель

С оптоволоконными кабелями не допускается выполнение следующих работ:

- Такие методы ремонта как: пайка, склеивание, сварка, стыковое соединение, опрессовка*
- Скрутка с оптоволоконным кабелем или медным проводом
- Радиусы изгиба менее 25 мм или заломы
- Повреждение оболочки: отверстия, порезы, передавливание
- Повреждение торцевой поверхности: царапины, сколы
- Загрязнение торцевой поверхности: пылью, жидкостями, распыляемой краской
- Петли, узлы или чрезмерные длины кабеля в жгуте

Работа с автомобилями, оснащенными сетью

Разъемы оптоволоконного кабеля

- Бортовая передача данных включает передачу данных между блоками управления.
- Система шины состоит из контроллера, приемопередатчика, линий, а также резисторов и фотодиодов, в зависимости от системы.
- Сообщения представляют собой строку из множества бит.
- Протокол передачи данных состоит из нескольких полей, включая начало блока данных (Start of Frame), арбитражное поле (Arbitration Field), поле данных (Data Field) и конец блока данных (End of Frame).
- Автомобили Audi оснащаются системи шин данных CAN, LIN и MOST, FlexRay а также системами Bluetooth.
- Шлюз взаимодействует между разными системами шин как "переводчик" и "фильтр", выполняя также роль диагностического интерфейса.
- План организации сети предоставляет общие данные о системах шин и подключенных к ним блокам управления.
- Испытание связи блоков управления выполняется с помощью автомобильного диагностического тестера.

Всего доброго и безопасности на дорогах! С наилучшими пожеланиями, Группа Обучения Сервисному Обслуживанию!