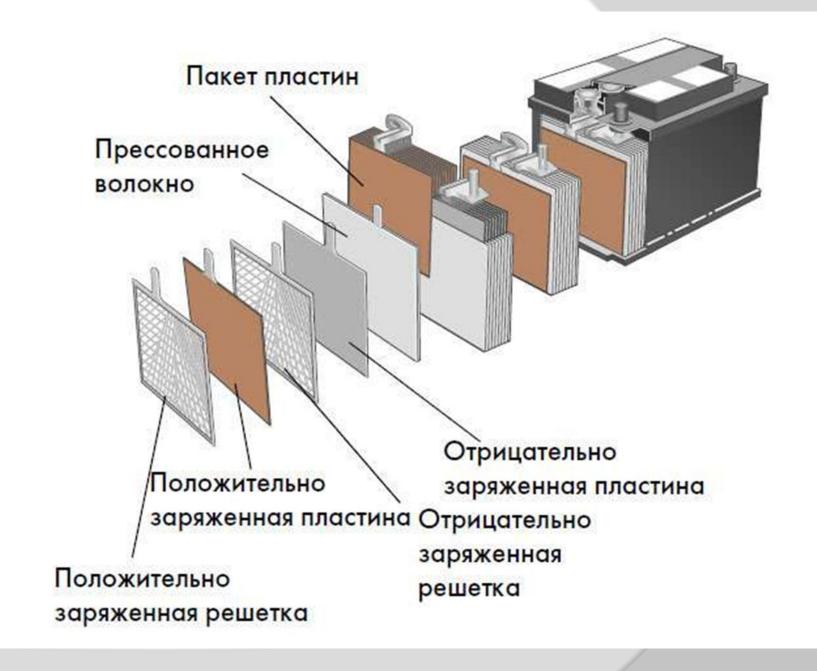


Военно-инженерный институт Учебный военный центр Отдел «Радиолокационного вооружения РТВ ВКС»

Тема № 4. Эксплуатация РЛС и НРЗ. Занятие № 10. Организация обслуживания свинцовых стартерных аккумуляторных батарей.

Учебные вопросы:

- 1. Эксплуатация и проверка работоспособности АКБ.
- 2. Обслуживание АКБ.


Рекомендуемая литература.

- Основы технической эксплуатации радиотехнических систем специального назначения (учебник МО РФ). В. Н. Ратушняк [и др.]; под общ. ред. К. А. Малыков; Сиб. федер. ун-т. Красноярск: СФУ, 2015. 332 с.
- Основы построения радиолокационной станции 1Л117(учебник МО РФ). В. Н. Ратушняк, В. Н. Тяпкин, А. Б. Гладышев ; отв. ред. А. Н. Фомин ; Сиб. федер. ун-т, Воен.-инж. ин-т. Красноярск : СФУ, 2017. 385 с.

Вопрос №1 «Эксплуатация и проверка работоспособности АКБ».

Аккумуляторные батареи устанавливаются на колесных и гусеничных машинах и предназначаются: для питания электрической энергией системы электрического пуска двигателя машины; для питания электрической энергией потребителей во всех режимах, когда при работающем двигателе генератор не обеспечивает необходимой мощности; для питания потребителей на стоянке, когда двигатель не работает или работает на пониженных частотах вращения. Стартерная аккумуляторная батарея состоит из нескольких аккумуляторов, соединенных между собой последовательно.

Аккумулятор - это химический источник тока, состоящий из положительного и отрицательного электродов и электролита, действие которого на использовании обратимых основано электрохимических систем. Простейший свинцовый аккумулятор состоит из положительного электрода, активным веществом которого является двуокись свинца PbO₂ (темно-коричневого цвета), И отрицательного электрода, активным веществом которого является губчатый свинец РЬ (серого цвета). Если оба электрода поместить в сосуд с электролитом (раствором серной кислоты H₂SO₄ в дистиллированной воде), то между электродами возникнет разность потенциалов.

Во время заряда в электролит выделяется серная кислота и расходуется вода. При этом плотность электролита по мере заряда возрастает. Таким образом, свинцовый аккумулятор обладает свойством обратимости, т. е. способностью накапливать электрическую энергию от постороннего источника тока в процессе заряда, сохранять ее в течение некоторого времени и отдавать ее в процессе разряда.

Емкостью аккумулятора называется количество электричества, отдаваемое полностью заряженным аккумулятором при его. разряде до допустимого конечного разрядного напряжения. Емкость аккумулятора измеряется в ампер-часах и определяется как произведение величины разрядного тока (в амперах) на продолжительность разряда (в часах).

•

Свинцовый аккумулятор

A:
$$Pb + HSO_4^- - 2e = PbSO_4 + H^+$$

K:
$$PbO_2 + HSO_4^- + 3H^+ + 2e = PbSO_4 + 2H_2O$$

$$Pb + PbO_2 + 2H_2SO_4 = 2PbSO_4 + 2H_2O$$

U = 12 B

(6 элементов по 2 В)

Электролит $-H_2SO_4$

 $Kaтoд - PbO_2$

Анод - губчатый Pb

Свинцовая решетка, заполненная губчатым свинцом (анод)

Свинцовая решетка, заполненная РьО₂ (катод)

Общие характеристики танковых, автомобильных и мотоциклетных аккумуляторных батарей

	HOC B, B			Габаритные размеры, мм		Масса, кг		Количество электролита, п		
Тип и исполнение батарей	Номинальное плря-жение, Е	20-часо- вой режим	10-часо- вой режим	guneria.	ширена	пысота	без электро- лита	с элек- тролитом	в батарее	в одном аккуму- ляторе
	-	-	Танковы	е батар	еи					
6CT3H-140M*	12	140	126	587	238	239	52,5	62,0	8,0	1,33
6CT-140P	12	140	126	587	238	239	51,0	62,0	8,0	1,33
12CT-70M*	24	-	70	587	238	239	58,0	67,5	9,0	0,75
12CT-70 **	24	-	70	587	238	239	58,0	67.5	9,0	0,75
12CT-85P	24	85	80	585	239	240	62,0	72,0	10,0	0,83
		A	втомобиль	ные ба	тарен					2.000
3CT-1509MC (ЭРС,ЭМ,ЭР)***	6	150	135	326	176	238	22,0	28,2	4,8	1,60
3CT-150TMC (TPC, TM, TP)	6	150	135	326	176	236	21,0	27,2	4,8	1,60
3CT-2159M (9P)	6	215	195	428	195	242	34,0	42,8	7,0	2,33
6CT-459M (9P)	12	45	42	240	179	224	16,0	19,8	3,0	0,50
6CT-503MC (3PC, 3M, 3P)	12	50	45	260	175	235	17,0	21,5	3,5	0,58
6CT-55OM (OP)	12	55	50	262	174	226	17,5	22,4	3,8	0,63
6CT-609M (9P)	12	60	54	283	182	237	19,5	22.4	3.8	0,63
6CT-759MC (9PC, 9M, 9P)	12	75	68	358	177	239	24.0	30.4	5.0	0.83
6CT-75TMC (TPC, TM, TP)	12	75	68	358	177	236	22,0	28,4	5,0	0,83
6CT-823MC (3PC, 3M, 3P)	12	82	75	391	186	240	27,5	33,8	5,4	0,90
6CT-90OMC (OPC, OM, OP)	12	90	81	421	186	238	28,0	35,6	6,0	1,00
6CT-1059MC (ЭРС, ЭМ, ЭР)	12	105	95	476	187	238	31,0	39,8	7.0.	1,17
6CT-1329MC (ЭРС, ЭМ, ЭР)	12	132	120	514	211	243	41,0	51,2	8,0	1,33
6CT-1829MC (ЭРС, ЭМ, ЭР)	12	182	165	522	282	243	55,0	70,2	11,5	1,92
6CT-190TP (TM)	12	190	170	587	238	238	57,2	71,7	12,0	2,00
6CT-190TPH (TMH)	12	190	170	587	238	238	58,2	72.7	12,0	2,00
		M	отоциклет	ные ба	тарен		Sr.			-
3MT-12	6	-	12	144	100	192	-	4,0	0,315	0,105
3MT-8	6	8		81	78	143	1,4	1,8	0,4	0,13
6MTC-9	12	9		140	78	142	3,2	4,0	0,7	0,12
6MTC-22	12	22		194	130	166	7,0	9.0	1,9	0,32

Сепаратор из мипласта
 Сепаратор из мипласта
 В скобках указаны варианты исполнения батарей с различными материалами сепараторов

Тип батарей определяется: - количеством последовательно соединенных аккумуляторов батарее (3, 6 или 12), характеризующим ее номинальное напряжение (6, 12 ила 24 соответственно); - назначением (СТ - стартерная); номинальной емкостью при 20-часовом режиме разряда (в А-ч). Буквы в конце обозначения типа батареи характеризуют: - материал моноблока (Э эбонит, Т - термопласт); - материал сепараторов (Р мипор, М - мипласт, С - стекло волокно); - серию (Н новая).

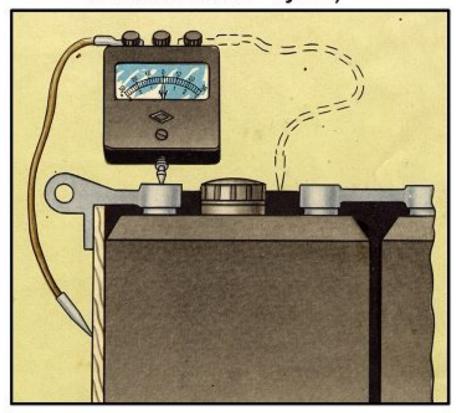
Меры безопасности при работе с АКБ

Во избежание несчастных случаев при работе с серной кислотой и электролитом (ожогов кожи, глаз и отравлений) необходимо соблюдать следующие правила:

- хранить кислоту в стеклянных бутылях с притертыми пробками или полиэтиленовых бутылях и канистрах с плотно закрывающимися крышками;
- переносить бутыли с кислотой только вдвоем, в корзинах или деревянных обрешетках;

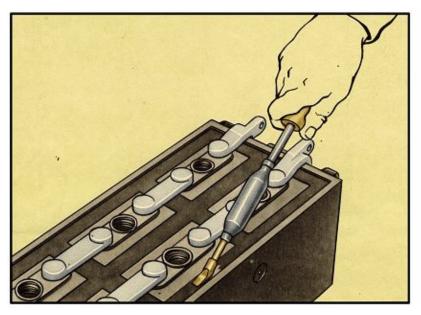
- для переливания кислоты из бутылей пользоваться специальным насосом или опрокидывателем;
- приготовлять электролит только в посуде, стойкой к действию серной кислоты (эбонитовой, фаянсовой, керамической и т. п.);
- стеклянной посудой пользоваться нельзя, так как стекло может лопнуть из-за высокой температуры, возникающей, при вливании кислоты в воду;
- при приготовлении электролита всегда вливать кислоту в воду тонкой струей при непрерывном помешивании стеклянной или эбонитовой палочкой.

При растворении серной кислоты в выделяется большое количество тепла. Если лить воду в кислоту, имеющую (почти в два раза) большую плотность, чем плотность воды, то вода растекается поверхности кислоты, быстро нагревается, образуя пары, и разбрызгивается вместе с кислотой. При вливании в воду кислота погружается в ее толщу, вследствие чего выделяющееся тепло отдается массе воды и разбрызгивания не происходит.

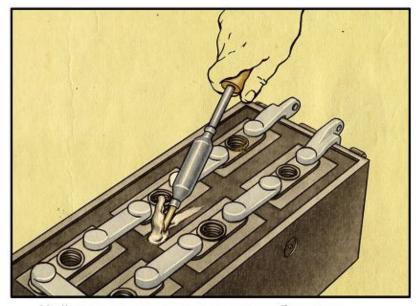

Категорически запрещается:

- вынимать бутыль с серной кислотой из корзины или обрешетки за горловину;
- переносить бутыли с кислотой без корзины или обрешетки;
- переливать кислоту из бутылей одному человеку без приспособлений;
- вливать воду в кислоту при приготовлении электролита.

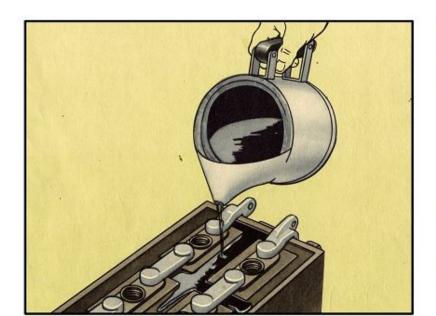
Помещение для заряда аккумуляторных батареи должно быть оборудовано приточно-вытяжной вентиляцией, обеспечивающей 6...8-кратный обмен воздуха в час. Вентиляция должна включаться перед началом заряда батарей и отключаться не менее чем через 1,5 ч после его окончания. При осмотре аккумуляторных батарей во время обслуживания запрещается пользоваться открытым огнем (спичками, свечами и т. п.) во избежание взрыва гремучего газа, скопившегося внутри аккумуляторов. Для осмотра разрешается пользоваться только электрическими переносными лампами безопасного напряжения 12 или 24 В. Категорически запрещается проверять состояние батарей коротким замыканием «на искру».

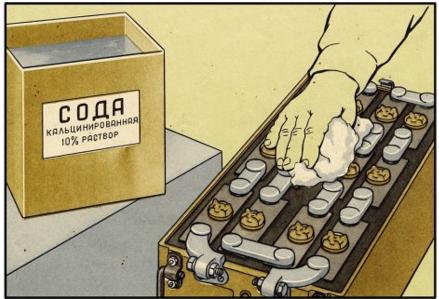

1. Внешний осмотр аккумулятора

Проверка батареи на саморазряд по поверхности (при отсутствии саморазряда стрелка прибора не должна отклоняться от "нуля")



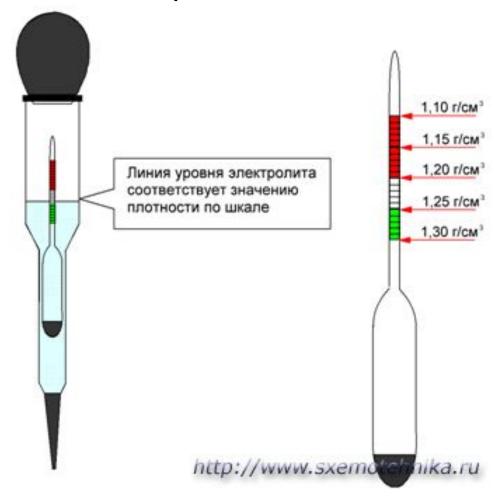
- 1). Проверить корпус АКБ на отсутсвие грязи, влаги, потеков электролита (испарение при кипении). Все это приводить к возникновению токов саморазряда АКБ.
- 2) Проверить нет ли трещин или разрушений корпуса АКБ
- 3) Проверить состояние герметизирующей мастики (трещины, отслаивание)
- 4) Проверить исправность проушин, полюсных выводов, очистить выводы от пыли и грязи. Отвернуть пробки, очистить отверстия в них.


Заделка трещин в мастике и снятие вспучившейся мастики. Пробки аккумуляторов должны быть вывернуты



Заливка поверхности батареи мастикой

Нейтрализация поверхности батареи. Пробки аккумуляторов должны быть ввернуты



2. Проверка уровня электролита

3. Проверка плотности электролита

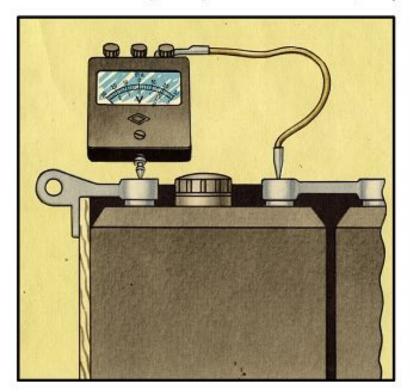
Плотность электролита полностью заряженных аккумуляторных батарей

Климатические зоны.		Плотность электролита, приведенная к 25°C, г/см ³		
Средняя месячная температура воздуха в январе, ^о С	Время года	заливаемого	заряженной батареи	
Очень холодная	Зима	1,28	1,30	
от -50 до -30	Лето	1,24	1,26	
Холодная от -30 до -15	Круглый год	1,26	1,28	
Умеренная от -15 до -4	Круглый год	1,24	1,26	
Жаркая от +15 до +4	Круглый год	1,22	1,24	
Теплая влажная от +4 до +6	Круглый год	1,20	1,22	

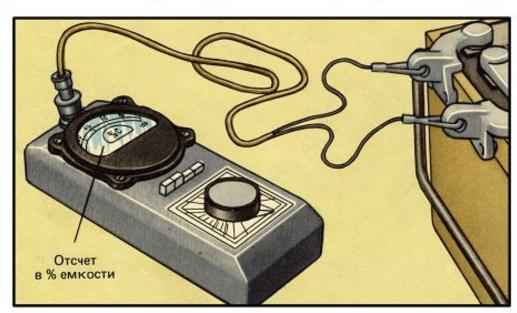
Понижение плотности электролита на 0,01 от установленной нормы соответствует разряду аккумулятора на 5-6 % Аккумуляторные батареи, разряженные на 25% зимой и на 50% летом, сдайте на зарядку

ОПРЕДЕЛЕНИЕ СТЕПЕНИ ЗАРЯЖЕННОСТИ АККУМУЛЯТОРА

Степень заряженности	Степень разряженности	Плотность электролита Г/см3 (**)	Напряжение на аккумуляторной батарее В (***)
100%	0%	1,28	12,7
80%	20%	1,245	12,5
60%	40%	1,21	12,3
40%	60%	1,175	12,1
20%	80%	1,14	11,9
0%	100%	1,10	11,7


^{*}указанные зависимости справедливы при температуре 20-25 С

^{**}плотность во всех ячейках должна быть равномерной и отличаться не более +-0,02-0,03,


^{***}Напряжение необходимо определять высокоомным омметром. Способ определение степени заряженности по напряжению справедлив только для аккумуляторов находившихся в стационарном состоянии не менее 8 часов.

4. Измерение напряжения на аккумуляторе вольтметром

Проверка на отсутствие короткого замыкания (при исправном аккумуляторе показание прибора - не менее 1,9 В)

Определение степени заряженности батареи переносным прибором

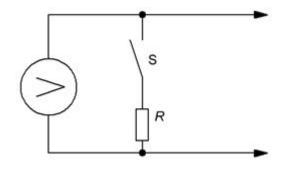
Основное назначение прибора - проверка степени заряженности батарей при их хранении с электролитом (на машинах и вне машин). Проверку заряженности при эксплуатации батарей следует проводить через 8 - 10 часов после снятия с заряда или остановки двигателя машины.

Напряжение полностью заряженного аккумулятора должно быть не менее 12,6 В. Если напряжение батареи менее 12 в, степень ее заряда упала больше чем на 50 %, аккумулятор необходимо срочно зарядить! Нельзя допускать глубоких разрядов АКБ, это ведетк сульфатации пластин аккумулятора. Напряжение на аккумуляторной батареи величиной меньше 11,6 в означает, что батарея разряжена на 100 %.

Автомобильный аккумулятор состоит из шести банок, соединенных последовательно. Напряжение одной банки можно вычислить по формуле:

где, ρ – плотность электролита;

Тогда напряжение на аккумуляторе будет равно:


Uакб =
$$6*(0.84 + p)$$

При плотности АКБ равной 1,27 г/см3 напряжение на аккумуляторе будет:

Uакб =
$$6*(0,84 +1,27) = 12,66$$
 вольт

4. Проверка АКБ нагрузочной вилкой

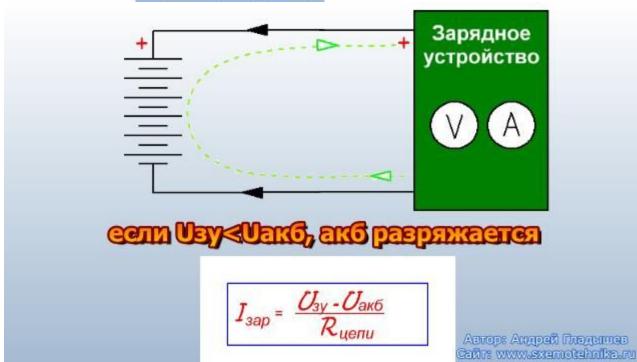
Нагрузочная вилка представляет собой вольтметр с возможностью подключения параллельно с его выводами нагрузки.

Для стартерных батарей сопротивление нагрузки выбирается в диапазоне 1-1,4 от емкости аккумулятора. Это считается максимальным разрядным током для аккумулятора. Не путать со стартерным током.

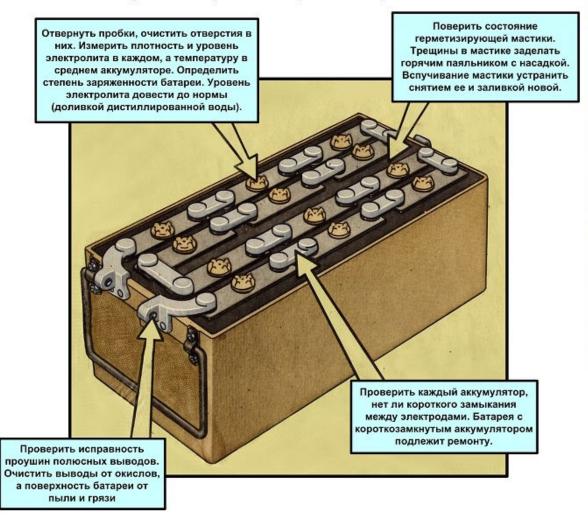
1) Измерение напряжения аккумулятора без нагрузки и определение степени его заряженности с помощью таблицы.

Показание вольтметра, В	>12,7	12,5	12,3	12,1	<11,9
Процент заряженности, %	100	75	50	25	0

http://www.sxemotehnika.ru

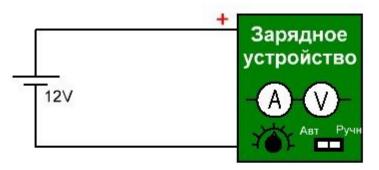

2) Измерение напряжение на аккумуляторе при подключенной нагрузки и определение степени заряженности согласно таблице. Снятие показание под нагрузкой производится в конце **пятой** секунды с момента подключения нагрузки.

Показание вольтметра, В	>10,2	9,6	9	8,4	<7,8
Процент заряженности, %	100	75	50	25	0

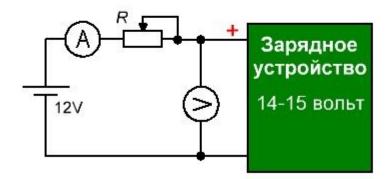

http://www.sxemotehnika.ru

Заряд АКБ при эксплуатации

Осмотр батарей перед зарядом на АЗС


Способ заряда батарей при постоянстве зарядного тока является для A3C основным.

Заряд этим способом проводится: при степени разряженности до 50%


током второй ступени;
 при степени разряженности более
 50% - током двух ступеней.

Окончание заряда определяется по постоянству плотности электролита и напряжения аккумуляторов в течение одного часа.

Данные о состоянии батарей перед зарядом и после заряда записать в журнале обслуживания батарей на A3C.

Универсальное зарядное устройство с функцией поддержания постоянного значения тока

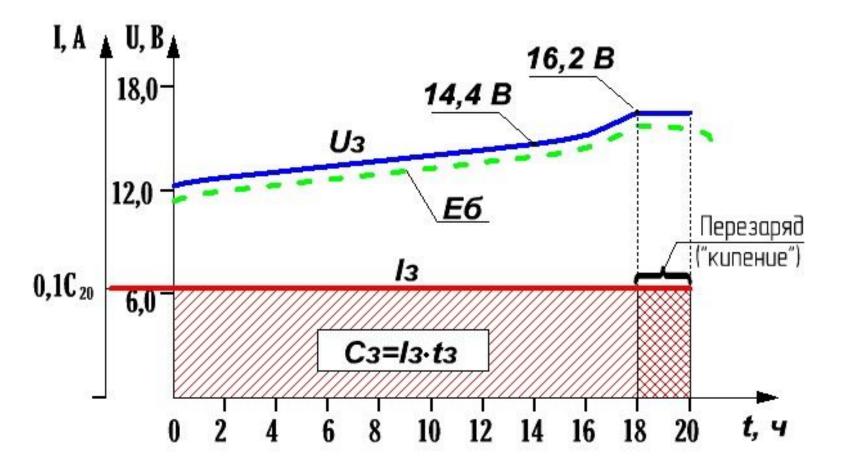
Зарядное устройство с не регулируемым выходным напряжением

Заряд аккумулятора при постоянстве зарядного тока.

Величина зарядного тока для танковых аккумуляторных батарей

T 5 ×	Величина зарядного тока, А					
Типы батарей	1-я ступень	2-я ступень	заряд перед контрольным разрядом при КТЦ			
6СТЭН-140М	16	10	10			
6CT-140P	16	10	10			
12CT-70M	8	5	5			
12CT-70	8	5	5			
12CT-85P	9	5	5			

Все заряды, как правило, проводятся током 2-й ступени. Двухступенчатый заряд рекомендуется проводить при большой степени разряженности батарей, а именно:


- при разряде в процессе эксплуатации на 50% и более;
- после контрольного разряда при контрольно-тренировочном . цикле.

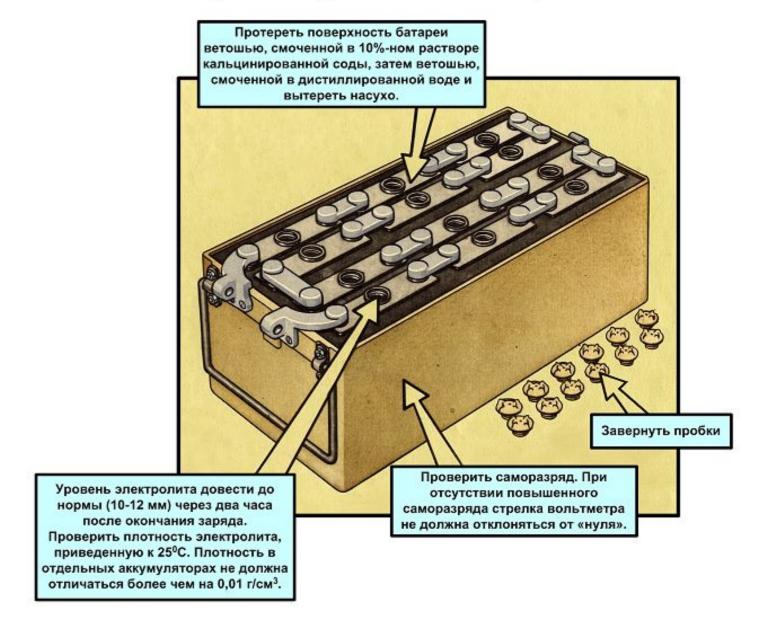
Величина нормального зарядного тока для автомобильных аккумуляторных батарей

Тип батареи	Зарядный ток , А		
6CT-60	6,0		
6CT-75	7,5		
6CT-90	9,0		
6CT-132	13,0		
6CT-182	18,0		
6CT-190	19,0		

Время заряда аккумулятора зависит от степени его разряженности перед началом заряда. Если аккумулятор был разряжен полностью но не ниже 10 вольт, то ориентировочное время его заряда будет в пределах 10 часов.

Заряд аккумуляторной батареи производится до достижения обильного газовыделения, постоянства напряжения и плотности электролита на протяжении 2 часов.

Заряд аккумулятора при постоянстве зарядного напряжения.


Заряд АКБ U=const

Время заряда, ч

Автор: Андрейніладышевт Сайт: www.sxemotehhika.ru

Осмотр батарей после заряда на АЗС

Контрольно-тренировочный цикл

Контрольно-тренировочный цикл проводится для контроля технического состояния аккумуляторных батарей, проверки отдаваемой ими емкости, исправления отстающих аккумуляторов.

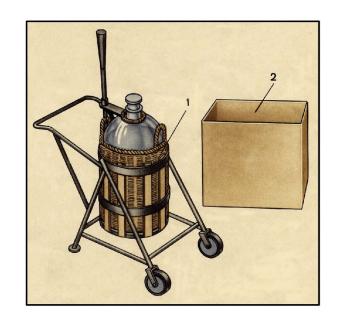
При контрольно-тренировочном цикле проводятся:

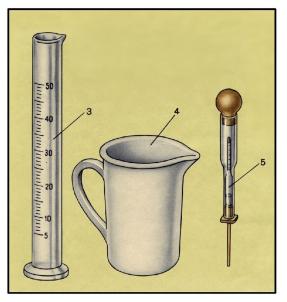
- предварительный полный заряд;
- контрольный (тренировочный) разряд током 10-часового режима;
- > окончательный полный заряд.

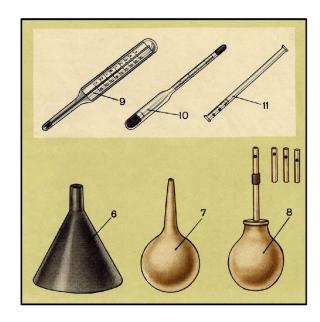
Предварительный полный заряд при КТЦ проводится зарядным током, указанным в табл. 1 и 2, с соблюдением всех правил заряда.

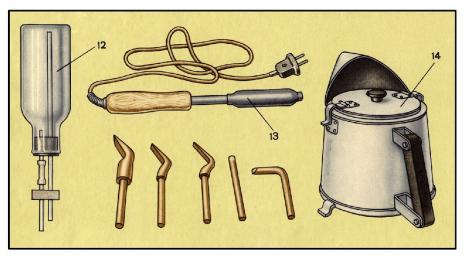
Контрольный заряд производится по группам при соответствующих переключениях в ЗРУ. Перед началом контрольного разряда температура электролита должна быть 18...27°C. Величина разрядного тока для аккумуляторных батарей должна соответствовать значению, указанному в табл. 3

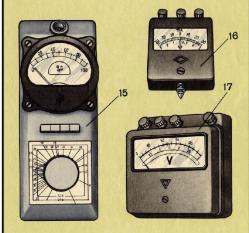
Тип батареи	Разрядный ток, А	
6CT-140P	12,6	
12CT-85P	8,0	
12CT-70M	7,0	
6CT-60	5,4	
6CT-75	6,8	
6CT-90	8,1	
6CT-132	12,0	
6CT182	16,5	
6CT-190	17,0	


Постоянство разрядного тока должно тщательно соблюдаться в течение всего разряда, который должен заканчиваться в момент снижения до 1,7 В на первом вышедшем аккумуляторе батареи. Замер напряжения на аккумуляторах и температуры в среднем аккумуляторе батареи производится при включении на разряд, затем через каждые 2 ч. При снижении напряжения на одном из аккумуляторов до 1,85 В замеры напряжения надо проводить через каждые 15 мин, а при снижении напряжения до 1,75 В, следует немедленно измерить напряжение на всех остальных аккумуляторах, отключить батарею от разрядной цепи и восстановить величину разрядного тока для оставшихся в группе батарей


Окончательный полный заряд автомобильных батарей производится нормальным зарядным током, указанным в табл. 2, с соблюдением всех правил с доводкой плотности электролита в конце заряда. Танковые батареи заряжаются током двух степеней согласно табл. 1. Между окончанием контрольного разряда и началом последующего заряда допускается разрыв по времени не более 12ч.




К обслуживанию аккумуляторных батарей электростанции допускаются дизелист - электрики, имеющие квалификационную группу по технике безопасности не ниже III и обученные методам безопасного обслуживания аккумуляторных батарей.


ПРИБОРЫ И ПРИСПОСОБЛЕНИЯ ДЛЯ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ БАТАРЕЙ

- 1. Опрокидыватель для переливания кислоты.
- 2. Бак для приготовления электролита.
- 3. Мензурка.
- Кружка фарфоровая, эбонитовая или пластмассовая.
- Ареометр с пипеткой (пределы измерения 1,10 - 1,30 г/см³).
- 6. Воронка эбонитовая или пластмассовая.
- 7. Резиновая груша.
- Резиновая груша с наконечником, имеющим боковое отверстие.
- 9. Термометр со шкалой от -30 до +50° C.
- 10. Денсиметр (пределы измерения 1,36 1,42 г/см³)
- 11. Уровнемерная трубка.
- 12. Приспособление для доливки дистиллированной воды в аккумуляторы при эксплуатации и хранении.
- 13. Паяльник электрический с комплектом насадок.
- 14. Мастиковарка.
- 15. Прибор для определения степени заряженности батарей
- 16. Вольтметр карманный M-55 (пределы измерений 3-0-3 B).
- 17. Вольтметр M45M (пределы измерений 3-15-150 B).

Периодичность и объем обслуживания батарей:

Еженедельно:

- очищать поверхность батарей от пыли и грязи;
- электролит с поверхности батарей вытирать насухо, нейтрализовать поверхность 10% раствором нашатырного спирта или кальцинированной соды, затем протирать насухо;
- проверять надежность присоединения проводов и перемычек к клеммам батарей;
- проверять уровень электролита в банках, степень заряженности батарей и при необходимости доливать в банки батарей дистиллированную воду и заряжать батареи.

Ежемесячно:

- выполнять операции еженедельного обслуживания;
- доводить уровень электролита в батареях до нормы путем доливки дистиллированной воды;
- заряжать аккумуляторные батареи и по окончании заряда довести плотность электролита до величины 1,25;
- нейтрализовать поверхность батарей и протереть насухо.

Необходимо помнить, что эксплуатация систематически незаряженных батарей, ведет к сульфации пластин (образованию трудно растворимого сульфата свинца), происходит закупоривание пластин, выдавливание активной массы из решеток и разрывов решеток. Что приводит к снижению емкости и срока службы батарей.

Признаки заряда батарей:

- Обильное газовыделение из банок батарей.
- Плотность электролита в каждой банке достигает наибольшей величины и не изменяется в течение двух часов.
- Напряжение на каждой банке батарей достигает величины 2,4 + 2,6 В и не изменяется в течение двух часов.

Перед началом заряда батарей необходимо:

- за 5-10 минут до начала заряда включить вентиляцию кузова электростанции;
- проверить состояние контактов выводных клемм батарей;
- замерить напряжение и плотность электролита каждого элемента батарей;
- включить зарядное устройство и установить величину зарядного тока 10-12 А для батарей 6СТЭН-140М.

Во время заряда батарей необходимо:

- поддерживать требуемую величину зарядного тока батарей;
- измерять напряжение, температуру и плотность электролита через каждый час;
- наблюдать за выделением газа из аккумуляторов, обращая внимание на его интенсивность и одновременность появления в элементах;
- при наступлении признаков заряда прекратить заряд батарей.

По окончании заряда батарей:

- удалить электролит с поверхности батарей, протереть поверхность ветошью, смоченной нейтрализующим раствором, промыть дистиллированной водой и затем вытереть насухо;
- убедиться в чистоте и надежности контактов в местах присоединения проводов и перемычек к клеммам батарей;
- через 2 часа после выключения батарей выключить вентиляцию кузова электростанции и завернуть пробки батарей.

Категорически запрещается:

- при приготовлении электролита ВЛИВАТЬ ВОДУ В КИСЛОТУ;
- хранить в кабинах энергосредств сосуды с запасом электролита и дистиллированной воды для обслуживания батарей;
- отключать вентиляцию кузова при заряде батарей ранее, чем через 2 часа после окончания зарядки батарей;
- пользоваться открытым огнем в кузовах электростанций;
- обслуживать аккумуляторные батареи без защитных средств и необходимого количества нейтрализующих растворов и чистой воды на месте производства работ;
- приводить сухозаряженные батареи в рабочее состояние в кузовах электростанций;
- использовать зарядное оборудование электростанций не по назначению, а также обслуживать и производить заряд аккумуляторных батарей с посторонних машин и механизмов в кузовах энергосредств.

При эксплуатации батарей на объекте через каждые 30 суток летом (температура окружающего воздуха выше 25°С) и через каждые 3 месяца в остальное время года батареи снять с объекта и провести следующие работы:

 проверить уровень и плотность электролита в каждом аккумуляторе и плотности электролита, учитывая температурную поправку, определить степень заряженности батарей;

- при повышении температуры электролита на 1°C его плотность снижается на 0,0007 г/см³, а при снижении температуры на 1°C плотность возрастает на такую же величину. Исходной считается температура +25°C. Понижение плотности электролита на 0,01 г/см³ соответствует разряженности аккумуляторов примерно на 5-6 %;
- уровень электролита в аккумуляторах установить на 15-17 мм выше предохранительной сетки путем доливки дистиллированной воды.

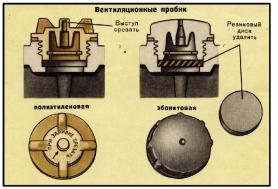
Доливать в аккумуляторы электролит запрещается за исключением тех случаев, когда точно известно, что понижение его уровня произошло из-за проливания или выплескивания электролита. В этом случае плотность доливаемого электролита должна соответствовать плотности электролита, находящегося в аккумуляторе.

- протереть батареи от пыли и грязи;
- Пролитый на поверхность батареи электролит вытереть чистой ветошью, смоченной в 10 % растворе аммиака или кальцинированной соды, затем поверхность протереть ветошью, смоченной в воде, и вытереть насухо чистой ветошью;

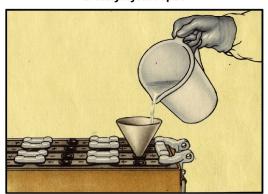
- зачистить контактные поверхности от окислов, а перемычки - от пыли и грязи;
- проверить и в случае необходимости прочистить вентиляционные отверстия в пробках;
- при появлении в герметизирующем материале трещин оплавить их паяльником или другим нагревательным прибором при вывернутых пробках. Пользоваться открытым огнем запрещается.

Независимо от степени заряженности батарей 6СТЭН-140М и 6СТ-140Р через каждые 3 месяца: заряжать током 2-ой ступени (10 А), а заряженности менее 50 % - током 1-ой ступени (16 А), до постоянства плотности электролита напряжения в течении одного часа. На вторую ступень заряда перейти, когда напряжение большинстве аккумуляторов достигнет 2,4 В. В процессе заряда температура электролита должна превышать 45°C. Если температура превысила указанную величину, заряд прервать для остывания электролита до 30-35°C.

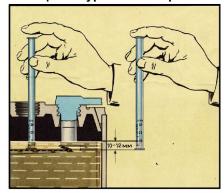
При установке батарей в отапливаемых агрегатных помещениях плотность электролита полностью заряженных батарей при 20-30°C должна составлять 1,26 г/см³, разряженных на 25 % (допустимо зимой) - 1,22 г/см³, разряженных на 50 % (допустимо летом) - 1,18 г/см³.

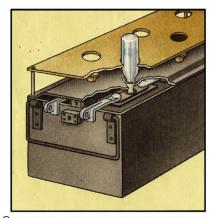

Плотность электролита после заряда корректируется путем доливки в аккумуляторы дистиллированной воды или электролита плотностью 1,40 г/см³. Излишки электролита отбираются резиновой грушей. После доливки батарея ставиться на заряд током 2-й ступени на 30-40 минут для перемешивания электролита. Откорректированная плотность электролита, приведенная к температуре +25°C, во всех аккумуляторах должна составлять 1,26+-0,01 г/см³. Уровень электролита через час после окончания заряда установить 15-17 мм над сеткой, при этом плотность доливаемого электролита должна соответствовать той, что электролит в аккумуляторах.

ПРИВЕДЕНИЕ БАТАРЕЙ В РАБОЧЕЕ СОСТОЯНИЕ


Плотность электролита для различных климатических зон

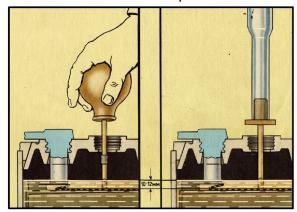
Климатические зоны (средняя месячная температура воздуха в январе, ⁰ С)	Плотность электролита, приведенная к 25°C, г/см³		
	Заливаемого	В полностью заряженной батарее	
Холодная зона (очень холодный район от минус 50 до минус 30)	1,27	1,29	
Холодный район (от минус 30 до минус 15)	1,26	1,28	
Умеренная зона (от минус 15 до минус 4)	1,24	1,26	
Жаркая зона (от минус 15 до плюс 4)	1,22	1,24	
Теплая влажная зона (от плюс 4 до плюс 6)	1,20	1,22	


Разгерметизация аккумуляторов


Простейший способ заливки электролита в аккумуляторы

Измерение уровня электролита

Заливка электролита в батареи 6СТ-140Р (6СТЭН-140М), расфасованного в бутылки с помощью приспособления



Электролит в аккумуляторы заливается до уровня 15 - 20 мм над предохранительным щитком. После двухчасовой пропитки уровень электролита доводится до 10 -12 мм и проводится подзаряд батарей. Температура заливаемого электролита 15 - 35 °C

Режимы заряда (подзаряда) аккумуляторных батарей при приведении их в рабочее состояние

Типы аккумуляторных	После хранения в сухом виде до 3 лет		После хранения в сухом виде более 3 лет			
пода	Ток Время		Ток зар	ояда, А		
	подзаря- да, А	одзаря- подзаря-	1-я ступень	2-я ступень	Время заряда	
6CT-140P (6CTЭH-140M)	12	4	12	12 6 ' '	До постоянства плотности	
12CT-85P 12CT-70M	9 8	4 4	9 8	5 4	электролита и напряжения в течение одного часа	

Установка эксплуатационного уровня электролита путем отбора или долива его с помощью груши или цилиндра ареометра, имеющих наконечник с боковым отверстием

Уровень электролита в аккумуляторах должен быть установлен: непосредственно после выключения батарей с заряда (подзаряда) - 15 - 17 мм (при необходимости отправки ее в эксплуатацию);

через два часа после окончания заряда (подзаряда) - 10 - 12 мм над предохранительным щитком.

Задание на самостоятельную подготовку:

- 1. Закрепить материал практического занятия, изучить организацию обслуживания свинцовых стартерных аккумуляторных батарей.
- 2. Быть готовым к опросу и «летучке» по пройденному материалу.