БАЗЫ ДАННЫХ. ИНФОРМАЦИОННЫЕ СИСТЕМЫ

- 1. Информационные системы
- 2. Базы данных (БД)
- 3. Реляционные БД

БАЗЫ ДАННЫХ. ИНФОРМАЦИОННЫЕ СИСТЕМЫ

Тема 1. Информационные системы

База данных (БД) – это хранилище данных о некоторой предметной области, организованное в виде специальной структуры.

Важно:

- данные о некоторой области (не обо всем)
- упорядоченные

Система управления базой данных (СУБД) — это программное обеспечение для работы с БД. Функции:

- поиск информации в БД
- выполнение несложных расчетов
- вывод отчетов на печать
- редактирование БД

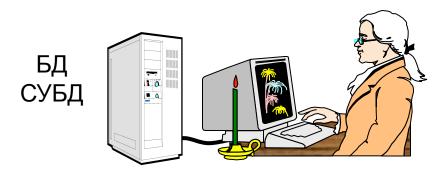
Информационная система = БД + СУБД!

• локальные ИС

БД и СУБД находятся на одном компьютере.

• файл-серверные

БД находится на сервере сети (файловом сервере), а СУБД на компьютере пользователя.

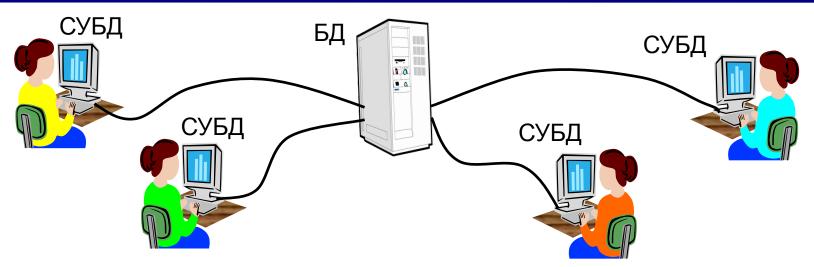

• клиент-серверные

БД и основная СУБД находятся на сервере,

СУБД на рабочей станции посылает запрос

и выводит на экран результат.

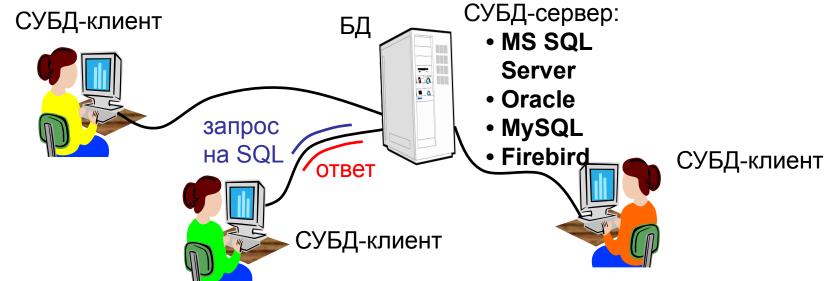
Локальные ИС



автономность (независимость)

- с БД работает только один человек
- сложно обновлять при большом количестве пользователей
- практически невозможно «стыковать» изменения, вносимые несколькими пользователями

Файл-серверные ИС



несколько человек работают с одной базой

- основную работу выполняют рабочие станции (РС), они должны быть мощными
- для поиска строки на РС копируется вся БД нагрузка на сеть
- слабая защита от взлома (только на РС)
- проблемы при одновременном изменении с разных РС

Клиент-серверные ИС

SQL (Structured Query Language) – язык структурных

запросов

- проще модернизация (только сервер)
- по сети идут только нужные данные
- защита на сервере (сложнее взломать)
- разделение доступа (очередь заданий)

- сложность настройки
- высокая стоимость ПО (тысячи \$)

БАЗЫ ДАННЫХ. ИНФОРМАЦИОННЫЕ СИСТЕМЫ

Тема 2. Базы данных

- табличные БД данные в виде одной таблицы
- сетевые БД набор узлов, в котором каждый может быть связан с каждым.
- иерархические БД в виде многоуровневой структуры
- реляционные БД (99,9%) набор взаимосвязанных таблиц

Табличные БД

Модель – картотека

Примеры:

- записная книжка
- каталог в библиотеке

Петров Вася Суворовский пр., д. 32, кв. 11 275-75-75

зап	ИСИ

			·	
	Фамилия	Имя	Адрес	Телефон
•	Петров	Вася	Суворовский пр., д. 32, кв. 11	275-75-75
×	Иванов	Дима	Кирочная ул., д.25, кв.12	276-76-76

ПОЛЯ

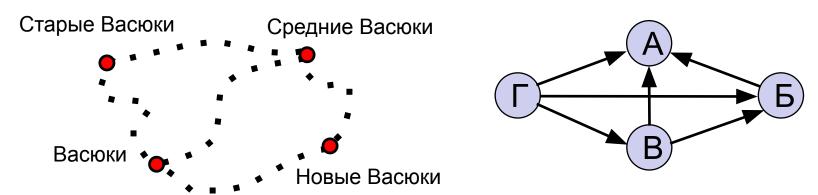
- 1) самая простая структура
- 2) все другие типы БД используют таблицы

во многих случаях – дублирование данных:

А.С. Пушкин	Сказка о царе Салтане	20 стр.
А.С. Пушкин	Сказка о золотом петушке	12 стр.

Табличные БД

- 1. Количество полей определяется разработчиком и не может изменяться пользователем.
- 2. Любое поле должно иметь уникальное имя.
- 3. Поля могут иметь различный тип:
 - строка символов (длиной до 255 символов)
 - вещественное число (с дробной частью)
 - целое число
 - денежная сумма
 - дата, время, дата и время
 - логическое поле (истина или ложь, да или нет)
 - многострочный текст (МЕМО)
 - рисунок, звук или другой объект (объект OLE)
- 4. Поля могут быть обязательными для заполнения или нет.
- 5. Таблица может содержать сколько угодно записей (это количество ограничено только объемом диска); записи можно добавлять, удалять, редактировать, сортировать, искать.


Ключевое поле (ключ таблицы)

Ключевое поле (ключ) – это поле (или комбинация полей), которое однозначно определяет запись. В таблице не может быть двух записей с одинаковым значением ключа.

Могут ли эти данные быть ключом?

- фамилия
- имя
- номер паспорта
- номер дома
- регистрационный номер автомобиля
- город проживания
- дата выполнения работы
- марка стиральной машины

Сетевая БД – это набор узлов, в которых каждый может быть связан с каждым (схема дорог).

- лучше всего отражает структуру некоторых задач (сетевое планирование в экономике)
- сложно хранить информацию о всех связях
 - запутанность структуры

Можно хранить в виде таблицы, но с дублированием данных!


Иерархические БД

Иерархическая БД – это набор данных в виде многоуровневой структуры (дерева).

Иерархические БД

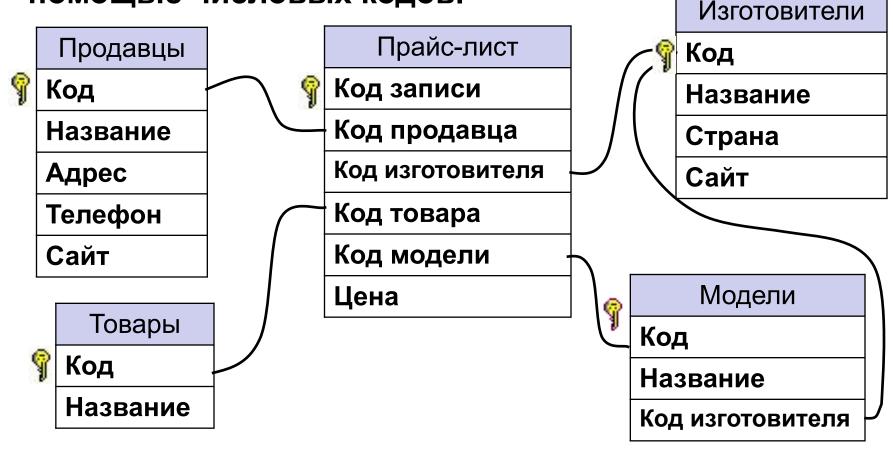
Прайс-лист:

Иерархические БД

Приведение к табличной форме:

Продавец	Товар	Изготовитель	Модель	Цена
Кей	Монитор	Sony	S93	\$306
Кей	Монитор	Sony	X93B	\$312
Key	Монитор	Phillips	190 B5 CG	\$318
Кей	Монитор	Samsung	SyncMaster	\$452
•••			193P	

- дублирование данных
- при изменении адреса фирмы надо менять его во всех строках
- нет защиты от ошибок ввода оператора (Кей – Кеу), лучше было бы выбирать из списка


БАЗЫ ДАННЫХ. ИНФОРМАЦИОННЫЕ СИСТЕМЫ

Тема 3. Реляционные базы данных

Реляционные БД

1970-е гг. Э. Кодд, англ. *relation* – отношение.

Реляционная база данных – это набор простых таблиц, между которыми установлены связи (отношения) с помощью числовых кодов.

Реляционные БД

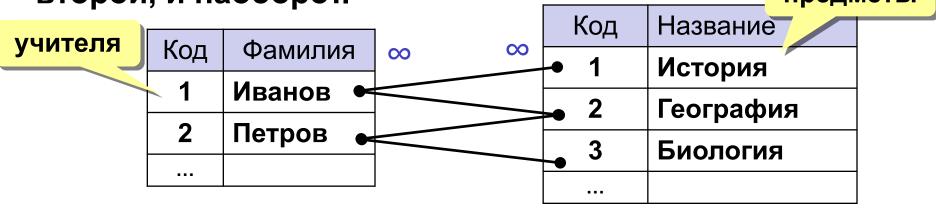
- нет дублирования информации;
- при изменении адреса фирмы достаточно изменить его только в таблице Продавцы;
- защита от неправильного ввода: можно выбрать только фирму, которая есть в таблице Продавцы;
- механизм транзакций: любые изменения вносятся в базу только тогда, когда они полностью завершены.

- сложность структуры (не более 40-50 таблиц);
- при поиске надо обращаться к нескольким таблицам;
- нужно поддерживать целостность: при удалении фирмы-продавца надо удалять все связанные записи (автоматически, каскадное удаление).

Связи между таблицами

Один к одному («1-1») – одной записи в первой таблице соответствует ровно одна запись во второй. Применение: выделение часто используемых данных.

Код	Фамилия	Имя
1	Иванов	Кузьма
2	Петров	Василий


<u> </u>		
Код	Год рожд.	Адрес
1	1992	Суворовский, д.20, кв.
2	1993	К ирочная, д. 30, кв 18

Один ко многим («1- ∞») – одной записи в первой таблице соответствует сколько угодно записей во второй.

товары	1 (\sim	прайс-л	ист
	Код	Название	Код	Код товара	Цена	
	1	Монитор	123	1	10 999	
	2	Винчесте	345	1	11 999	
		р				

Связи между таблицами

Многие ко многим («∞ - ∞») – одной записи в первой таблице соответствует сколько угодно записей во второй, и наоборот. _______ предметы

Реализация – через третью таблицу и две связи «1-∞».

1			∞	∞			1
Код	Фамилия	Код	Код	Код	Класс	Код	Название
1	Иванов	М	учителя	предмета		1	История
		1	1	1	9-A	•	история
2	Петров		<u>-</u>	-		2	География
		2	1	2	8-Б		
		2	2	2	7 D	3	Биология
		.5	2	3	7-B		
pac	писание					•••	

Нормализация базы данных

Нормализация – это разработка такой структуры БД, в которой нет избыточных данных и связей.

Любое поле должно быть неделимым.

Фамилия и имя	Фамилия	Имя
Иван в тр	Иванов	Петр
Петр	Петров	Иван

 Не должно быть полей, которые обозначают различные виды одного и того же, например,

 товаров.

 Год
 Бананы
 Киви

 2006
 32
 1200

 2007
 560
 1500

 ...
 1500

Год	Код товара	Кол-во
2006	1	1200
2007	2	1500

Код	Товар
1	Бананы
2	Киви
•••	

Нормализация базы данных

 Любое поле должно зависеть только от ключа (ключ – это поле или комбинация полей, однозначно определяющая запись).

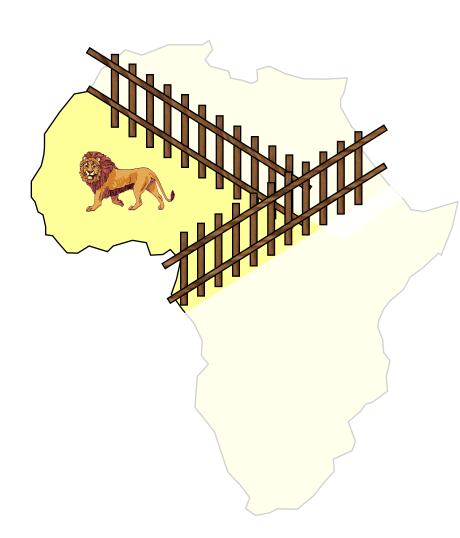
товары	Код	Название	Цена	зависит не только
	1	Монитор	00°p.	от названия товара!
	2	Винчесте	11) p.	прайс-лист
		p		праис-лист

 Не должно быть полей, которые могут быть найдены с помощью остальных.

Код	Товар	Цена за тонну	Кол-во, тонн	Стоимость
1	Бананы	1200	10	
2	Киви	1500	20	2 0

Поиск в базах данных

Линейный поиск – это перебор всех записей до тех пор, пока не будет найдена нужная.


_	Код	Фамилия	
	1	Сидоров	Иванов?
	2	Ветров	
•			1024 сравнения!
•	1024	Померанцев	•

 данные не надо предварительно готовить

низкая скорость поиска

- Разделить область поиска на две равные части.
- 2. Определить, в какой половине находится нужный объект.
- 3. Перейти к шагу 1 для этой половины.
- 4. Повторять шаги 1-3 пока объект не будет «пойман».

Поиск в базах данных

Двоичный поиск в БД – требует предварительной

сортировки.

Иванов?

1	Андреев	1	Андреев			
2	Барсуков			255	Журов	
		255	Журов	•••		
512	Ковалев			383	Игнатьев	
		512	Ковалев			
1023	Юрьев			512	Ковалев	
1024	Яшин	1024	Яшин			

Сколько сравнений?

11 сравнений!

быстрый поиск

- записи надо отсортировать по нужному полю
- можно использовать только для одного поля

Поиск по индексам

Индекс – это вспомогательная таблица, которая предназначена для быстрого поиска в основной таблице по выбранному столбцу.

Таблица

Номер	Дата	Товар	Количество
1	02.02.2006	Киви	6
2	01.11.2006	Бананы	3
3	12.04.2006	Апельсины	10

Индексы:

по дате

по товару

по количеству

Номер	Дата
1	02.02.2006
3	12.04.2006
2	01.11.2006

Номер	Товар
3	Апельсины
2	Бананы
1	Киви

Номер	Количество
2	3
1	6
3	10

Алгоритм:

- 1) двоичный поиск по индексу найти номера нужных записей;
- 2) выбрать эти записи по номерам из основной таблицы.

- двоичный поиск по всем столбцам, для которых построены индексы
- индексы занимают место на диске;
 - при изменении таблицы надо перестраивать все индексы (в СУБД – автоматически).