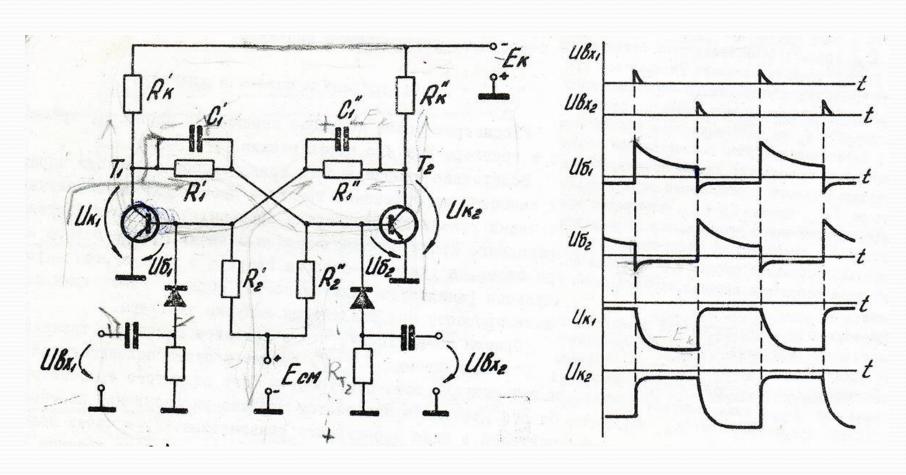
Тема: Триггеры на биполярных транзисторах. Генераторы линейно-изменяющегося напряжения

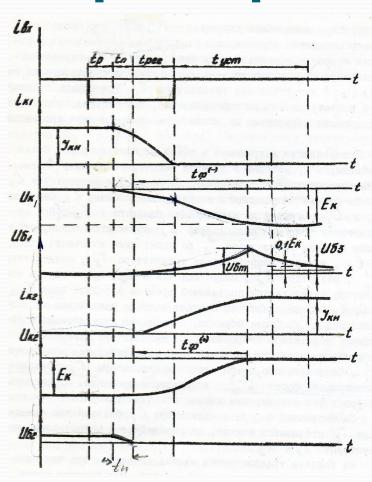
ПЛАН

- 1 Триггеры
- 2 Генераторы линейно-изменяющегося напряжения


о Триггеры

- Электронный триггер устройство с двумя устойчивыми состояниями предназначенное для хранения одного бита информации.
- Триггером называется спусковое устройство имеющее два электрических состояния устойчивого равновесия, способное скачком переходить из одного состояния в другое при воздействии на вход триггера управляющего сигнала.

Классификация триггеров

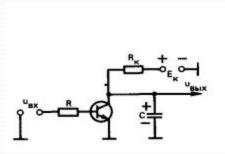

Схема и диаграмма работы симметричного триггера

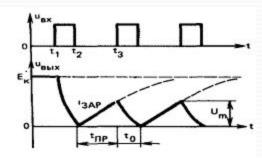
Принцип работы симметричного триггера

- В каждом из состояний устойчивого равновесия один из транзисторов открыт (в режиме насыщения), другой закрыт (в режиме отсечки).
- Пусть транзистор T_1 открыт, а T_2 закрыт. При этом потенциал на коллекторе транзистора T_1 близок к нулю; а на коллекторе T_2 близок к - E_k . Из базы транзистора T_1 через резистор R_1 отбирается ток, удерживающий этот <u>транзистор в состоянии насыщения</u>.
- Транзистор T_2 закрыт, так как на его базе образуется положительное напряжение смещения за счет источника E_k Конденсатор C_1' практически разряжен, а C_1'' заряжен до напряжения близкого к E_k . В связи с тем, что коэффициент усиления по току транзисторов, находящихся в режиме отсечки и насыщения, равен нулю, общее усиление в петле обратной связи также равно нулю. Этим обеспечивается устойчивость описанного состояния.
- Переход триггера из одного устойчивого состояния в другое (т.е. его переключение или опрокидывание) осуществляется путем воздействия внешнего запускающего импульса на базы или коллекторы транзисторов. (Подробнее о запуске триггера см. ниже.) Причем параметры запускающего сигнала должны обеспечивать вывод транзисторов в активный режим работы, когда восстанавливается усиление по току у транзисторов и в течение времени опрокидывания действует положительная обратная связь между ключами.
- После опрокидывания на коллекторе транзистора T_1 устанавливается отрицательный потенциал, близкий к $-E_k$, а на коллекторе T_2 потенциал, близкий к нулю. Конденсатор C_1' заряжается, а C_1'' разряжается, и на базе транзистора T_1 , устанавливается положительный потенциал, примерно равный E_{cm} , а на базе T_2 небольшой отрицательный потенциал (см. диаграмму). Новое устойчивое состояние триггера сохраняется до прихода очередного запускающего импульса.

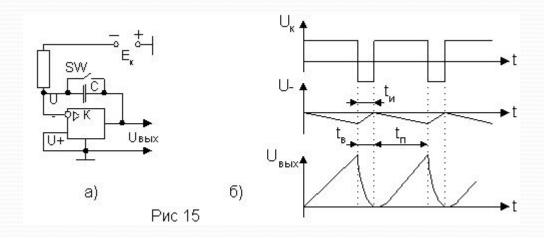
Переходные процессы в триггере

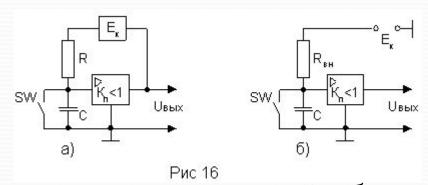
Примем по-прежнему, что в исходном состоянии транзистор T_1 открыт и насыщен, а T_2 закрыт и пусть положительный запускающий импульс тока поступает в базу открытого транзистора. Под его действием начинается процесс рассасывания неосновных носителей в базе насыщенного транзистора и через некоторое время t_p (рис.2) этот транзистор окажется на границе насыщения. С этого момента начинает уменьшаться его коллекторный ток, что приводит к возрастанию отрицательного напряжения на коллекторе U_{k_2} . Это вызовет снижение положительного напряжения смещения U_{62} на базе закрытого транзистора T_2 . Время t_p , в течение которого положительное напряжение смещения уменьшается от начального значения до нудя называется временем предварительного начального значения до нуля, называется временем предварительного формирования отрицательного фронта на коллекторе T_1 . Сумма t_1+t_2 называется временем подготовки. По истечении этого времени, т.е. после достижения $U_{62}=0$, транзистор T_2 открывается, восстанавливается усиление в петле положительной обратной связи, и в триггере за время t_2 происходит лавинообразный процесс опрокидывания (регенеративный процесс).

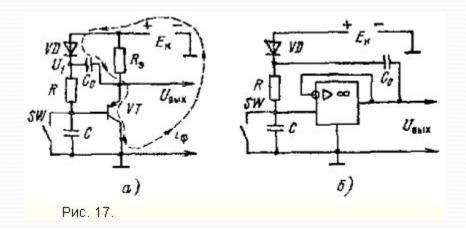

- Действительно, при открывании транзистора T_2 появляется ток i_{k2} в его коллекторной цепи. Приращение этого тока идет в базу транзистора T_1 и, складываясь с входным запирающим импульсом тока способствует запиранию транзистора T_2 . Коллекторный ток i_{k1} запирающегося транзистора T_1 уменьшается. Обратное приращение тока i_{k1} передается в базу открывающегося транзистора T_2 вызывает его еще большее отпирание в т.д. Лавинообразный процесс заканчивается закрыванием транзистора T_1 и открыванием T_2 . При этом положительная обратная связь между каскадами снова обрывается.
- Длительность t_{per}^{2} интервала опрокидывания составляет назначительную долю общей длительности переходного процесса. К моменту окончания опрокидывания при достаточно больших ускоряющих емкостях изменение тока базы $|\Delta|_{i_0}|_{i_0}|_{i_0}$ в отпирающемся транзисторе T_{i_0} равно по величине изменению коллекторного тока $|\Delta|_{i_0}|_{i_0}$ запирающегося транзистора T_{i_0} . Чем больше базовый ток к моменту окончания опрокидывания, тем быстрее происходит установление напряжения на коллекторе отпирающегося транзистора.
- ullet Установление напряжений и токов на коллекторах и базах транзисторов происходит в течение некоторого времени t_{ycr} когда осуществляется перезарядка ускоряющих конденсаторов C_1 .
- До начала запускающего импульса конденсатор С¹ был разряжен, а С¹ заряжен до напряжения близкого Ек. При опрокидывании триггера конденсатор С¹ заряжается током, отбираемым из базы транзистора Т¹ по цепи: плюс источника питания Ек², входное сопротивление транзистора Т³, конденсатор С¹ резистор Кк¹ минус источника Ек². Время заряда конденсатора определяется постоянной времени зарядной цепи t зар = С кк². Зарядный ток создает падение напряжения на сопротивлении Кк². Таким образом, нарастание отрицательного потенциала коллектора закрывающегося транзистора завершится тогда, когда прекратится зарядный ток, т.е. зарядится конденсатор С¹. Следовательно, время заряда конденсатора С¹ определяет отрицательный фронт t⁽⁻⁾ выходного напряжения. Отрицательный фронт тем меньше, чем меньше величина ускоряющей емкости. По окончании заряда конденсатора С¹ базовый ток транзистора Т² становится меньше, он определяется сопротивлениями резисторов К¹ и К².
 Из анализа транзисторных ключей известно, что чем большим базовым током включается транзистор, тем быстрее время его
- Из анализа транзисторных ключей известно, что чем большим базовым током включается <u>транзистор</u>, тем быстрее время его включения, т.е. короче положительный фронт t⁽⁺⁾, (для транзисторов p-n-p типа). Очевидно также, что по мере заряда конденсатора C зарядный ток уменьшается. Следовательно, если емкость ускоряющего конденсатора мала, то конденсатор успеет зарядиться до окончания опрокидывания триггера. Тогда базовый ток отпирающегося транзистора заметно уменьшится еще до окончания отпирания транзистора, и фронт нарастания коллекторного тока и коллекторного напряжения (положительный фронт t⁽⁺⁾, увеличится. Таким образом, для уменьшения отрицательного фронта выходного напряжения нужно уменьшать емкость ускоряющих конденсаторов, а для уменьшения положительного фронта увеличивать ее.
- При опрокидывании триггера конденсатор C_1 " получает возможность разрядиться по двум цепям: а) левая обкладка C_1 ", резистор R_2 ', источник смещения, сопротивление эмиттер-коллектор T_2 , правая обкладка C_1 "; б) левая обкладка C_1 ", сопротивление R_1 ", правая обкладка C_1 ". Вследствие разряда конденсатора C_1 ", напряжение U_{δ_1} на базе транзистора T_1 оказывается положительным и большим стационарного значения напряжения запирания (динамическое смещение). По мере разряда конденсатора C_1 " разрядный ток убывает и U_{δ_1} стремится к станционарному значению.


2 Генераторы линейноизменяющегося напряжения

 Генераторы линейно изменяющегося напряжения (ГЛИН) представляют собой электронные устройства, напряжение на выходе которых в течение некоторого времени изменяется по линейному закону.


- Часто такое напряжение меняется периодически.
- Если напряжение изменяется от меньшего значения к большему (по абсолютному значению), то его называют линейно нарастающим, если от большего значения к меньшему, то - линейно падающим.
- Периодически изменяющееся напряжение называют пилообразным.


Простейший ГЛИН


ГЛИН С ООС

При введении положительной обратной связи через резистор на его верхнем выводе должна действовать сумма напряжений источника питания Ек и Ивых. Заменив R на Rвн (рис. 16, б), получим схему простого ГЛИН, к выходу которого подключен неинвертирующий усилитель с Кп < 1. Для такой схемы коэффициент нелинейности получается минимальным при Кn > 1

ГЛИН С ПОС

