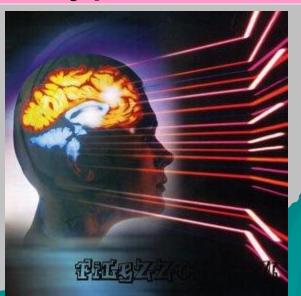


Нервная система 2

Колледж фармация вечер

Prosencephalon Передний мозг

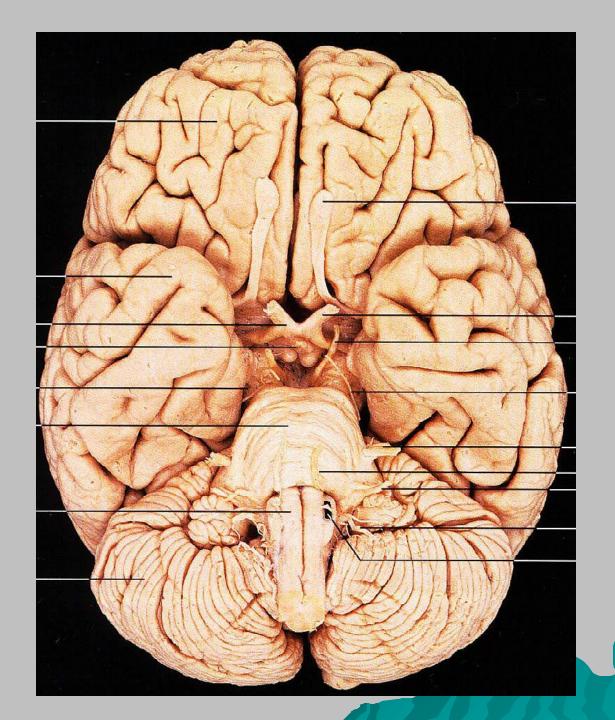

Telencephalon Конечный мозг Diencephalon Промежуточный мозг

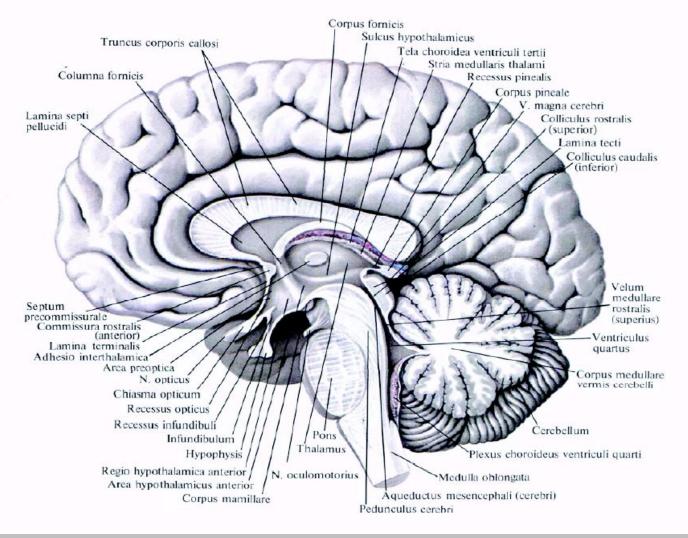
Thalamericephalo

Thalamus

Epithalamus Metathalamu

Hypothalamus


ПРОМЕЖУТОЧНЫЙ



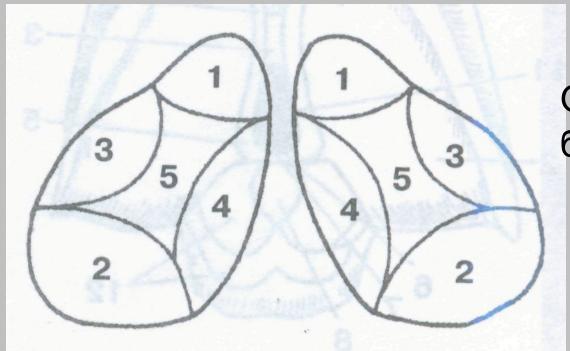
Таламический мозг

Таламус Эпиталамус Метаталамус Гипоталамус

Сосочковые тела Серый бугор с воронкой Гипофиз Зрительный перекрест

Границей между таламическим мозгом и гипоталамусом на сагиттальном срезе является <u>гипоталамическая</u> <u>борозда</u>, идущая по боковой стенке III желудочка к межжелудочковому отверстию.

Таламический мозг



Таламус

Краткое определение функционального значения таламуса

Коллектор чувствительных путей.

Центр всех видов чувствительности (без всяких исключений).

От 40 до 98 и более ядер (150)

- 1. Передняя группа ядер.
- 2. Задняя группа ядер.
- 3. Вентролатеральная группа ядер.
- 4. Медиальная группа ядер.
- 5. Центральная группа ядер.

Передняя группа ядер таламуса

Являются обонятельными, вкусовыми и вегетативными центрами.

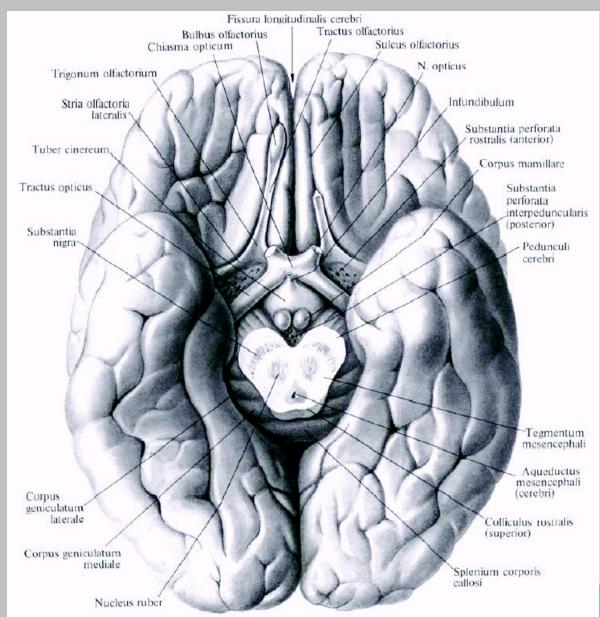
Задняя группа ядер таламуса

В подушке таламуса находятся подкорковые зрительные центры, являющиеся IV нейронами проводящего пути органа зрения.

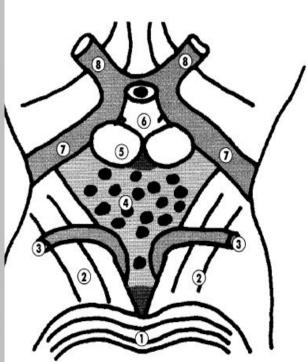
Вентролатеральная группа ядер

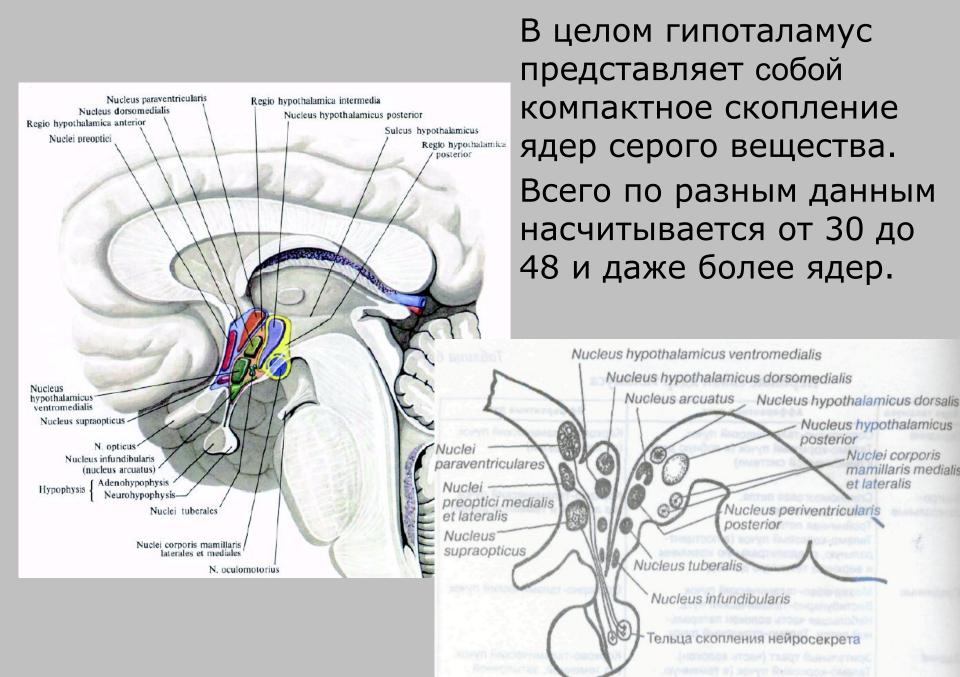
- Это центры общей чувствительности (болевой, температурной и тактильной).
- Здесь находятся III нейроны специфических чувствительных путей.
- На этих ядрах заканчиваются волокна медиальной петли, спинномозговой петли и тройничной петли.

Медиальная группа ядер


- Это чувствительные ядра экстрапирамидной системы.
- Эти ядра дают проекцию в моторную зону коры и связаны с базальными ядрами полушарий большого мозга.

<u>Центральная группа</u> ядер


Здесь находятся подкорковые слуховые и вестибулярные центры. Они связаны с соответствующими


проводящими путями.

Гипоталамус

Гипоталамус включает в себя зрительный перекрест, серый бугор с воронкой, сосцевидные тела.

Если кратко обозначить функциональное значение гипоталамуса в целом, то это обеспечение интеграции и управление различными процессами внутренней среды организма.

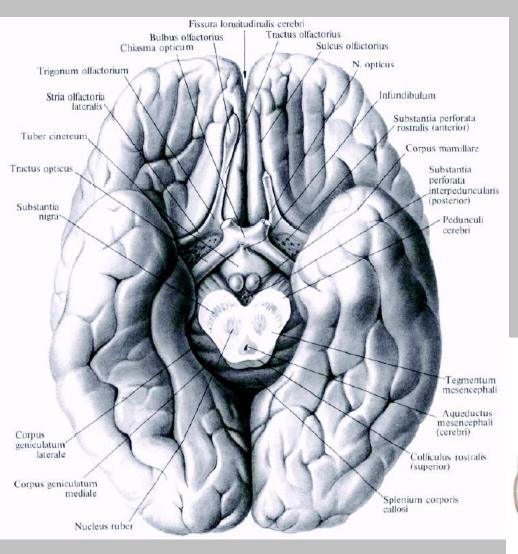
А также можно сказать, что гипоталамус это «вегетативный мозг» или же «висцеральный мозг».

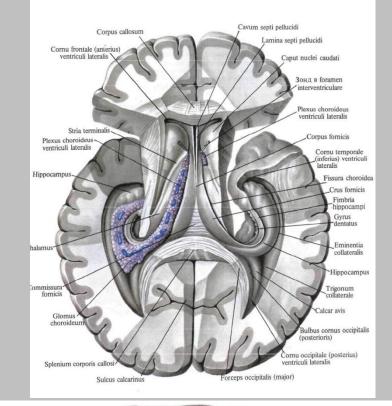
Ретикулярная формация

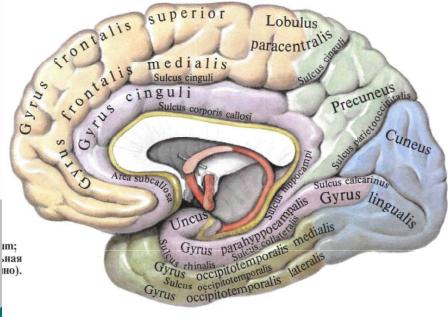
Этот термин был предложен в **1855** году Отто Дейтерсом (1834-1863) – немецким анатомом и гистологом.

Клетки ретикулярной формации имеют слабоветвящиеся дендриты и значительно разветвлённые аксоны.

Аксоны делятся на восходящие и нисходящие ветви, благодаря чему устанавливаются взаимосвязи с различными отделами ЦНС.

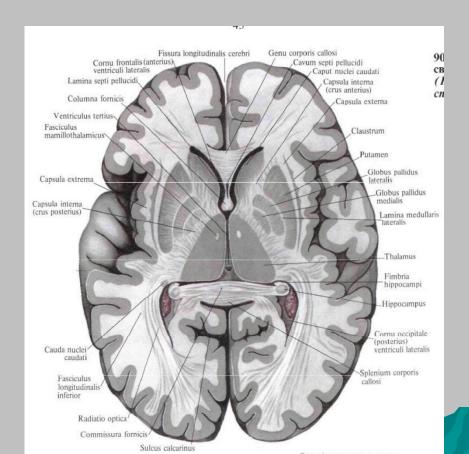

Аксоны образуют большое количество коллатералей.


- Клетки ретикулярной формации образуют скопления ядра.
- Впервые ядра ретикулярной формации описал:
- Владимир Михайлович Бехтерев (1857-1927) советский психоневролог и физиолог.


Последующими исследованиями было установлено, что в ретикулярной формации насчитывается до 100 ядер.

Даже возбуждение небольшой части ретикулярной формации вовлекает в процесс всю её, что приводит к активизации практически всей коры полушарий большого мозга.

Такая функциональная взаимосвязь обеспечивает такие физиологические состояния: смена сна и бодрствования, сохранения сознания.



Функциональное значение лимбической системы

- Регулирует деятельность внутренних органов (сердечный ритм, дыхательные движения, сосудистый тонус, изменение перистальтики и т. д.). При этом эти процессы могут идти как со знаком «+», так и со знаком «-».
- Формирование эмоций (страх, гнев, ярость, агрессия, эмоции удовольствия).
- Участие в формировании памяти.

Конечный мозг

- Кора полушарий (плащ).
- Базальные ядра.
- Белое вещество.

Анализаторы

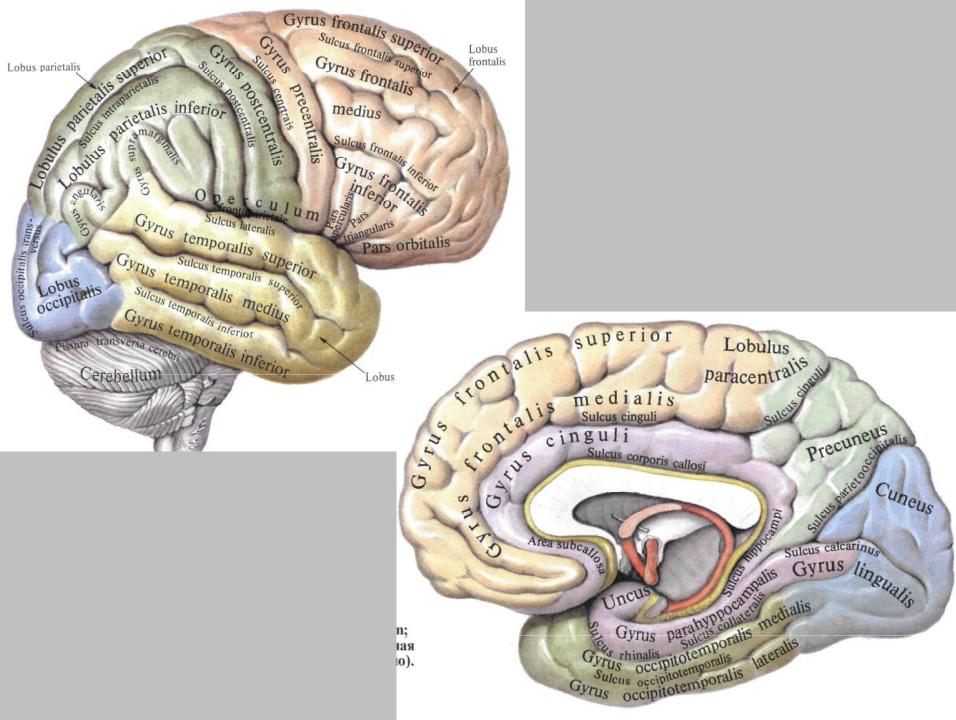
Анализатор состоит из:

- Рецепторного поля, воспринимающего раздражение и трансформирующего его в нервный импульс.
- Проводящих нервный импульс трактов.
- Корковых концов или мозговых центров.

Функции мозговых центров

- Разложить на отдельные, более простые компоненты информацию, поступающую из внешней и внутренней среды организма, то есть произвести её анализ.
- Произвести синтез нервных импульсов, возникающих в ответ на раздражения для того, чтобы сформировать ответную реакцию.

Мозговой центр состоит из:


- «Ядра» представляет собой место скопления (концентрации) нейронов. Является точной проекцией в коре головного мозга периферического рецептора. Оно является основой, на которой осуществляется высший анализ и синтез.
- «Рассеянные элементы». Они расположены по периферии ядра мозгового центра, либо даже значительно отдалены от него. В них происходит более простой анализ и синтез полученной информации. Они даже могут компенсировать утраченные функции при повреждении «ядра».

Анализаторы подразделяются на анализаторы I сигнальной системы, обеспечивающие конкретно-наглядное мышление, то есть комплексы ощущений и анализаторы II сигнальной системы, обеспечивающие абстрактное мышление, которое основано на речи, то есть словесное мышление.

Анализаторы I сигнальной системы

Анализаторы внешнего мира

1. Слуховой анализатор. Корковый конец этого анализатора располагается в глубине латеральной борозды в средней части верхней поверхности верхней височной извилины (соответствует поперечным височным извилинам — извилины Гешля). к нервным клеткам, составляющим «ядро» этого анализатора подходят проводящие пути, несущие нервные импульсы с рецепторов органа слуха как справа, так и слева.

іая 10).

- 2. Зрительный анализатор. Ядро зрительного анализатора располагается на медиальной поверхности затылочной доли по бокам шпорной борозды. Ядро зрительного анализатора каждого полушария связано с сетчаткой обоих глаз.
- **3. Обонятельный анализатор.** Ядро этого анализатора находится в области крючка парагиппокампальной извилины и гиппокампе.
- **4. Вкусовой анализатор.** Ядро этого анализатора спроецировано в область крючка парагиппокампальной извилины. (по другим данным имеются представительства в островке и нижних отделах постцентральной извилины).

5. Кожный анализатор (общей чувствительности). Ядро его спроецировано в область постцентральной извилины и верхней теменной дольки. Сюда стекается сенсорная информация, возникающая вследствие действия болевых, температурных, тактильных (прикосновение, давление) раздражений.

Анализаторы раздражений из внутренней среды организма

1. Двигательный анализатор проприоцептивных раздражений. Ядро этого анализатора располагается в предцентральной извилине и парацентральной дольке, а также коре постцентральной извилины.

- 2. Двигательный анализатор целенаправленных сложных профессиональных движений или анализатор практической деятельности (центр праксии: praxis практика).
- Ядро этого анализатора строго ассиметрично, то есть располагается у правшей в левом полушарии, а у левшей в правом.
- Центр праксии расположен в надкраевой извилине (в нижней теменной дольке).

- 3. Двигательный анализатор, имеющий отношение к сочетанному повороту головы и глаз. Ядро этого анализатора располагается в заднем отделе средней лобной извилины.
- **4. Статистический (вестибулярный) анализатор.** Ядро этого анализатора расположено в области средней и нижней височной извилины.
- **5. Анализатор импульсов, идущих от внутренних органов.** Ядро его локализовано в нижних отделах преди постцентральной извилин.

Анализаторы II сигнальной системы

1. Двигательный анализатор артикуляции речи (речедвигательный анализатор). Ядро его расположено в заднем отделе нижней лобной извилины. Описан был в 1861 году Полем Брока (1824-1880) — французским антропологом и хирургом. Поэтому используется название центр Брока.

2. Слуховой анализатор устной речи.

Ядро этого анализатора располагается на верхней поверхности заднего отдела верхней височной извилины. Описано было в 1874 году немецким неврологом и психиатром Карлом Вернике (1848-1905) в связи, с чем используется название центр Вернике.

- 3. Двигательный анализатор письменной речи. Ядро этого анализатора расположено в заднем отделе средней лобной извилины. Оно связано с центром праксии, а также с ядрами анализаторов управляющих движениями верхней конечности и обеспечивающих сочетанный поворот головы и глаз.
- 4. Зрительный анализатор письменной речи. Ядро этого анализатора расположено в угловой извилине (нижняя теменная долька).