АВТОМАТИЧЕСКИЕ УСТАНОВКИ ПОЖАРОТУШЕНИЯ

20.04.01 «Пожарная безопасность».

Практическое занятие т. 2.2:

Расчет и проектирование автоматических установок газового пожаротушения

профессор: д.т.н., доцент Терехин Сергей Николаевич

Учебные вопросы занятия:

- 1. Обоснование вида АПЗ и выбор огнетушащего вещества.
- 2. Инженерные расчеты (определение массы ГОС, гидравлический расчет).
- 3. Разработка технологической части установки.
- 4. Разработка электротехнической части установки.

Нормативно-правовые акты:

- 1. Федеральный закон Российской Федерации от 10 июля 2012 г. № 117-ФЗ "О внесении изменений в Федеральный закон Российской Федерации от 22 июля 2008 г. № 123-ФЗ "Технический регламент о требованиях пожарной безопасности".
- 2. ГОСТ Р 53280.3—2009. Установки пожаротушения автоматические. Огнетушащие вещества. Часть 3. Газовые огнетушащие вещества. Методы испытаний.
- 3. ГОСТ Р 53281—2009. Установки газового пожаротушения автоматические модули и батареи. Общие технические требования. Методы испытаний.
- 4. ГОСТ Р 53282—2009. Установки газового пожаротушения автоматические резервуары изотермические пожарные. Общие технические требования. Методы испытаний.
- 5. ГОСТ Р 53283—2009. Установки газового пожаротушения автоматические. Устройства распределительные. Общие технические требования. Методы испытаний
- 6. СП 485.1311500.2020. Системы противопожарной защиты. Установки пожаротушения автоматические. Нормы и правила проектирования

1. Обоснование вида АПЗ и выбор огнетушащего вещества.

Первая группа ГОТВ — ингибиторы (хладоны).

Они имеют механизм тушения, основанный на химическом ингибировании (замедлении) реакции горения. Попадая в зону горения, эти вещества интенсивно распадаются с образованием свободных радикалов, которые вступают в реакцию с первичными продуктами горения. При этом происходит снижение скорости горения до полного затухания.

Вторая группа — это разбавляющие атмосферу газы.

К ним относятся такие сжатые газы, *как аргон, азот, инерген, аргонит*. Их механизм тушения основан на разбавлении атмосферы в зоне горения до значений при котором процессы горения не возможны.

Novec 1230 Fire Protection Fluid Novec 1230 - высокоэффективный газ для тушения пожаров с наличием на объекте защиты людей.

Газ обладает огнетушащей концентрацией 4,2% при безопасной норме - 10%, органы зрения и дыхания остаются вне опасности при использовании автоматических установок пожаротушения с газовым огнетушащим веществом Novec 1230.

Запатентован корпорацией <u>ЗМ</u> в качестве <u>хладагента</u> в ходе изысканий по замене <u>хладона 114</u> (1,1,2,2-тетрафтордихлорэтана), применение которого наряду с другими хлорсодержащими <u>фреонами</u> было ограничено <u>Монреальским протоколом</u> 1993 года. Впервые продемонстрирована в 2004 году.

Выбор газового огнетушащего вещества должен производиться только на основе технико-экономического обоснования.

Все остальные параметры, в т.ч. эффективность и токсичность огнетушащих веществ нельзя рассматривать как определяющие.

По действующим в России нормативным требованиям запрещено выпускать газовое огнетушащее вещество в помещение, если там находятся люди. Поэтому исключается влияние огнетушащего вещества непосредственно на человека.

Исходными данными для расчета и проектирования АУГП являются:

- 1. перечень помещений и наличие пространств фальшполов и подвесных потолков, подлежащих защите установкой пожаротушения;
- 2. количество помещений (направлений), подлежащих одновременной защите централизованной установкой пожаротушения;
- 3. геометрические параметры помещений (конфигурация помещения, длина, ширина и высота ограждающих конструкций);
- 4. конструкция перекрытий и расположение инженерных коммуникаций;

Исходными данными для расчета и проектирования АУГП являются:

- 4. конструкция перекрытий и расположение инженерных коммуникаций;
- 5. площадь постоянно открытых проемов в ограждающих конструкциях и их расположение;
- 6. предельно допустимое давление в защищаемых помещениях;
- 7. диапазон температуры, давления и влажности в защищаемом помещении и в помещении, в котором размещаются составные части централизованной установки;
- 8. перечень и показатели пожарной опасности веществ и материалов, находящихся в защищаемых помещениях, и соответствующий им класс пожара;

Исходными данными для расчета и проектирования АУГП являются:

- 9. тип, величина и схема распределения пожарной нагрузки;
- 10. наличие и характеристика систем вентиляции, кондиционирования воздуха, воздушного отопления;
- 11. характеристика технологического оборудования;
- 12. категория помещений и классы зон
- 13. наличие людей и пути их эвакуации.

Выбор оптимального, для защиты конкретного объекта, ГОТВ на этапе проектирования возможен основе анализа перечисленных ниже основных критериев выбора:

- 1.Возможность ликвидации пожара имеющегося класса.
- 2. Нормативная объемная огнетушащая концентрация
- 3.Контроль массы ГОТВ.
- 4.Количество модулей с ГОТВ.
- 5.Трубная разводка.
- 6.Токсичность.
- 7.Взаимодействие с пожарной нагрузкой.

Выбор оптимального, для защиты конкретного объекта, ГОТВ на этапе проектирования возможен основе анализа перечисленных ниже основных критериев выбора:

- 8. Выбор ГОТВ при замене озоноразрушающих ГОТВ, хладонов 13В1, 114В2.
- 9. Наличие методик гидравлического расчета.
- 10. Стоимость.
- 11. Эксплуатационные свойства, срок хранения, возможность заправки в регионе, стоимость утилизации и обслуживания, унификация оборудования для уменьшения запаса и резерва.
- 12. Опыт проектировщиков по использованию данных ГОТВ, наличие рекламы и т.д.

Для объектов, принадлежащих иностранным собственникам, оборудованных установками газового пожаротушения на территории России, необходимым условием страхования является одобрение ГОТВ, оборудования и методик для его расчета ведущими мировыми страховыми компаниями в области пожарной безопасности: NFPA-National Fire Protection Association (США), FM-Factory Mutual Research Corporation (США), и др.

Наиболее безопасные огнетушащие газы для людей - это 3М™ Novec™ 1230 и Хладон 227.

Безопасность для людей очень важна в тех случаях, когда эвакуация людей при пожаре просто невозможна. К таким помещениям относятся:

- -центры управления полетами, -
- -также диспетчерские вышки в аэропортах,
- диспетчерские железнодорожных вокзалов -
- другие объекты, где присутствие людей жизненно необходимо.

2. Инженерные расчеты (определение массы ГОС, гидравлический расчет).

Поскольку газовое пожаротушение является объемным, то соответственно основными исходными данными для его расчета будут длина, ширина и высота помещения. Зная точный объем помещения, можно посчитать массу газового огнетушащего вещества, необходимую для тушения этого объема. Расчет массы газа, который должен храниться в установке, производится приложению Д, Г СП 485.2020

$$M_{_{\Gamma}} = K_{_{1}}[M_{_{p}} + M_{_{Tp}} + M_{_{6}}n]$$

$$M_{_{\Gamma}} = K_{_{1}}[M_{_{p}} + M_{_{Tp}} + M_{_{6}}n]$$

M_p - масса ГОТВ, предназначенная для создания в объеме помещения огнетушащей концентрации при отсутствии искусственной вентиляции воздуха.

 K_1 — коэффициент, учитывающий утечки газового огнетушащего вещества из сосудов, const=1,05 п. Е.2.1.;

М_{тр} - масса остатка ГОТВ в трубопроводах.

$$M_{_{\mathrm{TP}}} = V_{_{\mathrm{TP}}} \rho_{\Gamma\mathrm{OTB}}$$

Мб n – произведение остатка ГОТВ в модуле Мб, который принимается по ТД на модуль, кг, на количество модулей в установке n.

$$M_{_{\mathrm{TP}}} = V_{_{\mathrm{TP}}}
ho_{\Gamma\mathrm{OTB}}$$

 ${f V}_{_{TD}}$ - объем всей трубопроводной разводки установки, м3.

р_{готв} - плотность остатка ГОТВ при давлении, которое имеется в трубопроводе после окончания истечения массы газового огнетушащего вещества Мр в защищаемое помещение.

$$\rho_{\text{готв}} = \rho_1 \frac{P_H}{P_a}$$

 P_H — давление поддува модуля, 0,7МПа для сжатых газов, 0,5МПа для сжиженных;

Ра- атмосферное давление;

 $ho_{\text{готв}}$ далее находится по гидравлическому расчету.

- для ГОТВ - сжиженных газов, за исключением двуокиси углерода:

$$M_{\rm p} = V_{\rm p} \rho_1 (1 + K_2) \frac{C_{\rm H}}{100 - C_{\rm H}}$$

- для ГОТВ - сжатых газов и двуокиси углерода:

$$M_{\rm p} = V_{\rm p} \rho_1 (1 + K_2) \ln \frac{C_{\rm H}}{100 - C_{\rm H}}$$

Vp - расчетный объем защищаемого помещения, м^{3/}

К2 - коэффициент, учитывающий потери газового огнетушащего вещества через проемы помещения.

 ρ_1 - плотность газового огнетушащего вещества с учетом высоты защищаемого объекта относительно уровня моря для минимальной температуры в помещении $T_{_{\rm M}}$:

$$\rho_{\scriptscriptstyle \Phi} = \rho \ \frac{T_{\scriptscriptstyle O}}{^3\!T_{\scriptscriptstyle M}} K$$

 ho_0 - плотность паров газового огнетушащего вещества при температуре T_0 =293К и атмосферном давлении 101,3 кПа.

Тм – минимальная температура воздуха в защищаемом помещении, К.

 K_3 - поправочный коэффициент, учитывающий высоту расположения объекта относительно уровня моря (приложение Д. к СП 485).

С - объемная концентрация (%) (приложение Д СП 485).

Коэффициент, учитывающий потери газового огнетушащего вещества через проемы помещения:

$$K_{\text{Bog}} = \Pi \delta \tau \quad \sqrt{H}$$

где П - параметр, учитывающий расположение проемов по высоте защищаемого помещения (Еб)

$$\delta = rac{\Sigma F_{_{
m H}}}{V_{
m p}}$$
 - параметр негерметичности помещения

 $au_{\text{под}}$ - нормативное время подачи ГОТВ в защищаемое помещение

Н - высота помещения, м.

Методика расчета площади проема для сброса избыточного давления в помещениях, защищаемых установками газового пожаротушения

$$F_{\rm c} \ge \frac{K_{\rm p} K_{\rm 3} M}{0.7 K_{\rm h} \tau_{\rm d} \rho} \sqrt{\frac{\rho_{\rm B}}{7 \cdot 10^6 P_{\rm a} \left[\left(\frac{P_{\rm np} + P_{\rm a}}{P_{\rm a}} \right)^{0.2857} - 1 \right]} - \Sigma F$$

P_{пр} - предельно допустимое избыточное давление, которое определяется из условия сохранения прочности строительных конструкций защищаемого помещения или размещенного в нем оборудования, МПа

Ра - атмосферное давление, МПа

 $ho_{\rm B}$ - плотность воздуха в условиях эксплуатации защищаемого помещения, кг/м3;

К₂ - коэффициент запаса, принимаемый равным 1,2;

К₃ - коэффициент, учитывающий изменение давления при его подаче;

Для ГОТВ - сжиженных газов коэффициент $K_3 = 1$

Для ГОТВ - сжатых газов коэффициент К, принимается равным:

для азота - 2,4;

для аргона - 2,66;

для состава "Инерген" - 2,44.

∑F - площадь постоянно открытых проемов (кроме сбросного проема) в ограждающих конструкциях помещения, м²

Значения величин Мр, К, р определяются исходя из

ЗАДАЧА

Произвести расчет массы газового огнетушащего вещества для установок газового пожаротушения и рассчитать площади проема для сброса избыточного давления в помещении.

Таблица

	 помещения11
Первая цифра	Назначение помещения
задания	
0	Помещение для размещения электронно-вычислительных машин (ЭВМ)
1	Серверная
2	Помещение хранения фотопленки
3	ЦОД
4	Помещение хранения ценностей ломбарда
5	Помещение автоматической междугородней телефонной станций (12 тыс.
	междугородных каналов)
6	Склад декораций
7	Помещение хранения музейных ценностей
8	Помещение хранения служебных каталогов и описей в библиотеки (500 тыс.
	единиц)
9	Помещение хранения уникальных изданий, рукописей

Размер защищаемого помещения

Параметр	Вторая цифра задания									
	0	1	2	3	4	5	6	7	8	9
Длина, м	6	8	9	10	12	9	14	10	8	9
Ширина,	5	4	7	5	6	6	4	9	8	9
M										
Высота, м	3	2	2,5	4	3	2	4	2,5	3	4

Наименование применяемого ГОТВ

	Третья цифра варианта								
	1,6	2, 7	3, 8	4, 9	5, 0				
Наимен	Хладо	Хладо	Хладо	Элегаз	ФК-5-1-12				
ование	н 125	н 318Ц	Н		$(CF_3CF_2C(O))$				
ГОТВ			227ea)CF(CF ₃),				

Таблица 2

Таблица 3

Дополнительные исходные

Таблица

Исходные Номер варианта по не вертой цифре задания										
Исходные									1.	
данные	1	2	3	4	5	6	7	8	9	0
Размещение	150	350	450	200	400	450	1500	1750	1250	350
защищаемого										
помещения над										
уровнем моря, м										
Площадь										
постоянно	0,6	0,2	0,3	0,15	0,25	0,1	0,5	0,4	0,3	0,25
открытых										
проемов										
Размещение	равномерн	в нижней	В	равномер	В	в нижней	В	в нижней	В	равномер
постоянно	oe	зоне	верхней	ное	верхней	зоне	верхней	зоне	верхней	ное
открытых	распределе		зоне	распреде	зоне		зоне		зоне	распреде
проемов	ние по всей			ление по						ление по
	высоте			всей						всей
				высоте						высоте
Минимальная	10	14	15	25	12	24	18	24	11	10
температура										
пом., °С										

Исходные данные (пример расчета)

Таблица 1 Назначение помещения Первая цифра задания Назначение помещения 7 Помещение хранения музейных ценностей Таблица 2

Размер защищаемого помещения

Параметр

Вторая цифра задания 0 Длина, м 6 Ширина, м 5 Высота, м 3 Таблица 3 Наименование применяемого ГОТВ Третья цифра варианта 0 Наименование ГОТВ ФК-5-1-12 (CF3CF2C(O)CF(CF3)2)

Исходные данные

Таблица 4 Дополнительные исходные данные Исходные данные Номер варианта по четвертой цифре задания 1 Размещение защищаемого помещения над уровнем моря, M **150** Площадь постоянно открытых проёмов 0,6 Размещение постоянно открытых проёмов Равномерное распределение по всей высоте Минимальная температура пом., °С 10

Решение

$$M_{_{\Gamma}} = K_{_{1}}[M_{_{p}} + M_{_{Tp}} + M_{_{6}}n]$$

Решение

В соответствии с Таблицей А.1, п. А.10, Приложения А СП 485, помещение хранения музейных ценностей (задано исходными данными, Таблица 1) подлежит защите автоматическими установками пожаротушения не зависимо от площади помещения. Исходя из применяемого ГОТВ ФК-5-1-12 (CF3CF2C(O)CF(CF3)2) (определено исходными данными Таблица 3) выбираем МГП-М 150-25 «Пламя». Расчёт производят в соответствии с требованиями и по методикам, указанным в СП 485, приложения Д и Е. Расчётное количество (масса) ГОТВ в установке должно быть достаточным для обеспечения его нормативной огнетушащей концентрации в любом защищаемом помещении или группе помещений, защищаемых одновременно. Согласно п. 8.6.3 СП 485 должен предусматриваться 100% запас ГОТВ.

Расчёт массы остатка ГОТВ в трубопроводах

Мтр - масса остатка ГОТВ в трубопроводах, вычисляется по формуле:

$$M_{_{\mathrm{TP}}} = V_{_{\mathrm{TP}}}
ho_{\Gamma\mathrm{OTB}}$$

В связи с тем, что на начальном этапе, до проведения гидравлического расчёта, объём всей трубопроводной разводки не известен, принимаем масса остатка ГОТВ в трубопроводах Мтр = 0.

Расчёт массы ГОТВ, предназначенной для создания в помещении огнетушащей концентрации

В соответствии с Таблицей 8.1, п. 8.3.1. СП 485 Хладон ФК-5-1-12 (CF3CF2C(O)CF(CF3)2) является сжиженным газом, поэтому расчёт будем вести по первой формуле.

$$M_{\rm p} = V_{\rm p} \rho_1 (1 + K_2) \frac{C_{\rm H}}{100 - C_{\rm H}}$$

В соответствии с Таблицей 8.1, п. 8.3.1. 485 Хладон ФК-5-1-12 (CF3CF2C(O)CF(CF3)2) является сжиженным газом, поэтому расчёт будем вести по первой формуле. П

Примем расчётный объём равным геометрическому объёму:

$$Vp = H \cdot W \cdot L = 3 \cdot 5 \cdot 6 = 90 \text{ M}$$

 ρ 1 - плотность газового огнетушащего вещества с учетом высоты защищаемого объекта относительно уровня моря для минимальной температуры в помещении ρ 1 = 14,08 кг м3

$$\rho_{\Phi} = \rho \frac{T_{o}}{T_{M}} K$$

$$ho_{\Phi}=
ho$$
 $\frac{T_{o}}{3T_{M}}K$ $ho_{1}=14,08\,\mathrm{kf}\,\mathrm{m3}$

- р0 плотность паров газового огнетушащего вещества при температуре Т0 =293 К и атмосферном давлении 101,3 кПа. Плотность паров при нормальных условиях для Хладона ФК-5-1-12 (CF3CF2C(O)CF(CF3)2) составляет 13,6 кг/м3;
- Тм = 10 С = 283 К минимальная температура воздуха в защищаемом помещении (задано исходными данными, Таблица 4);
- К3 поправочный коэффициент, учитывающий высоту расположения объекта относительно уровня моря. В соответствии с Таблица Д. 16, Приложения Д 485, для высоты над уровнем моря 150 м. (задано исходными данными, Таблица

Сн - объёмная концентрация (%). В соответствии с Таблица Д. 12, Приложения Д СП 485, нормативная объёмная огнетушащая концентрация Хладона ФК-5-1-12 (CF3CF2C(O)CF(CF3)2) составляет 4,2 %.

К2 - коэффициент, учитывающий потери газового огнетушащего вещества через проемы помещения:

$$K2 = \Pi \cdot \delta \cdot \tau$$
под · $\sqrt{H} = 0.4 \cdot 0.0067 \cdot 10 \cdot \sqrt{3} = 0.046$

П - параметр, учитывающий расположение проемов по высоте защищаемого помещения, м0,5с-1. В соответствии с п. Е.2.2, Приложения Е СП 485», П = 0,4 м0,5с-1 - при примерно равномерном распределении площади проемов по всей высоте защищаемого помещения (задано исходными данными, Таблица 4);

Параметр негерметичности помещения, м-1

Нормативное время подачи ГОТВ в защищаемое помещение, с. Для модуля типа МГП-М150-25 «Пламя» использующего в качестве ГОТВ Хладон ФК-5-1-12 (CF3CF2C(O)CF(CF3)2) продолжительность (время) выпуска ГОТВ, не более 10 с. Н = 3 м. - высота помещения (задано исходными данными, Таблица 2).

Вычислим массу ГОТВ, предназначенная для создания в помещении огнетушащей концентрации:

Mр = **53,43** кг.

$$M_{\rm p} = V_{\rm p} \rho_1 (1 + K_2) \frac{C_{\rm H}}{100 - C_{\rm H}}$$

Определение масса остатка ГОТВ в модуле

Количество модулей и вместимость баллона МГП-М150-25 «Пламя» использующего в качестве ГОТВ Хладон ФК-5-1-12 (CF3CF2C(O)CF(CF3)2), выбираем из рассчитанной выше массы ГОТВ, предназначенной для создания в помещении огнетушащей концентрации.

Mp = 53,43 кг.

Коэффициент наполнения Хладона ФК-5-1-12 (CF3CF2C(O)CF(CF3)2) 1,3 кг/л.

Тогда V = m / ρ = 53,43/1,3 = 41,1 л.

Выбираем 1 модуль МГП-М150-25 «Пламя» с вместимостью баллона 50 л.

Мб = 0,4 кг. - масса остатка ГОТВ в модуле.

Расчёт массы ГОТВ, которая должна храниться в установке

Масса ГОТВ, которая должна храниться в установке, определяется по формуле:

```
M\Gamma = K1 \cdot [Mp + M\tau p + M\delta \cdot n] = 1,05 \cdot [53,43 + 0 + 0,4 \cdot 1] = 56,52 кг. где: K1 = 1,05 - коэффициент, учитывающий утечку ГОТВ из сосудов; Mp = 53,43 кг. – масса ГОТВ, предназначенная для создания в помещении огнетушащей концентрации (рассчитана в п. 1.2); M\tau p = 0 - {\rm Macca} остатка ГОТВ в трубопроводах (принята в п. 1.1) M\delta = 0,4 кг. – масса остатка ГОТВ в модуле (принята в п. 1.3);
```

n = 1 - количество модулей в установке (принято в п. 1.3).

Расчёт площади проема для сброса избыточного давления в помещениях, защищаемых установками газового пожаротушения

$$F_{\rm c} \ge \frac{K_{\rm p} K_{\rm 3} M}{0.7 K_{\rm h} \tau_{\rm m} \rho} \sqrt{\frac{\rho_{\rm B}}{7 \cdot 10^6 P_{\rm a} \left[\left(\frac{P_{\rm np} + P_{\rm a}}{P_{\rm a}} \right)^{0.2857} - 1 \right]} - \Sigma F$$

Расчёт площади проема для сброса избыточного давления в помещениях, защищаемых установками газового пожаротушения

Рпр - предельно допустимое избыточное давление, которое определяется из условия сохранения прочности строительных конструкций защищаемого помещения или размещенного в нем оборудования, в соответствии с таблицей А.4, п. А3.8 ГОСТ Р 12.3.047-2012 «Система стандартов безопасности труда (ССБТ). Пожарная безопасность технологических процессов. Общие требования. Методы контроля», нижний порог повреждения человека волной давления 5 кПа = 0,005 МПа; Ра - атмосферное давление, нормальное атмосферное давление принимается равным 101325 Ра = 0,1013 МПа

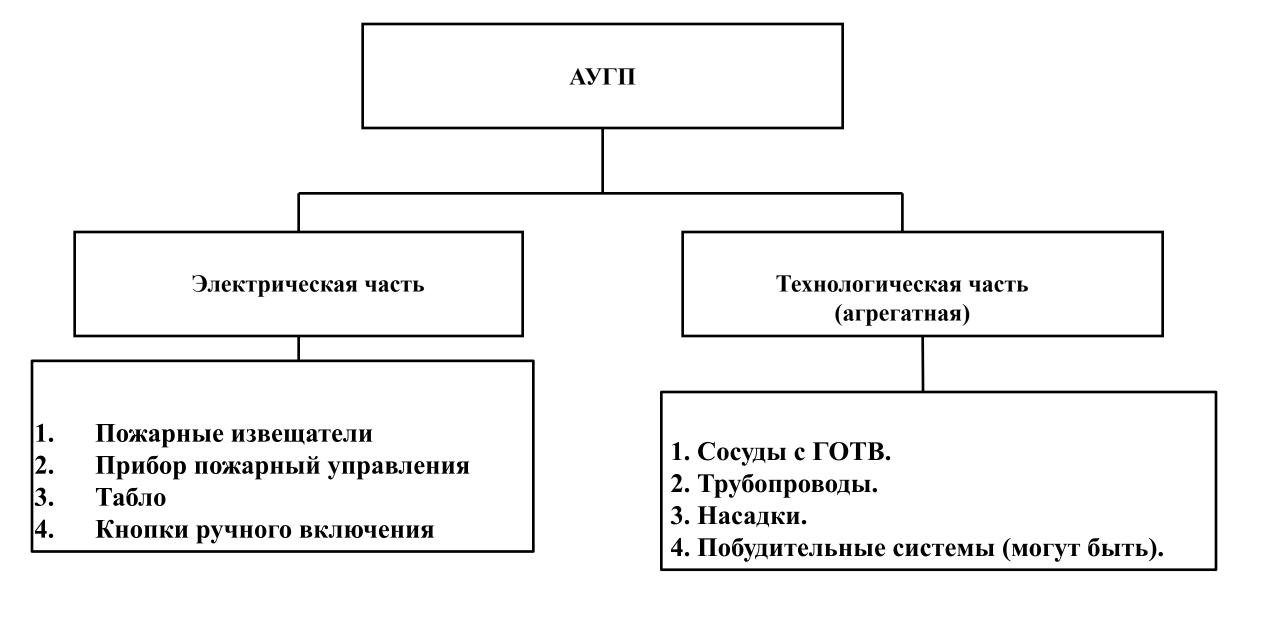
- ов воздуха в условиях эксплуатации защищаемого помещения, принимается равным 1,2 кг/м3;
- К2 коэффициент запаса, принимаемый равным 1,2;
- К3 коэффициент, учитывающий изменение давления при его подаче, для

сжиженных газов коэффициент К3=1;

Расчёт площади проема для сброса избыточного давления в помещениях, защищаемых установками газового пожаротушения

Нормативное время подачи ГОТВ в защищаемое помещение, с. Для модуля типа МГП-М150-25 «Пламя» использующего в качестве ГОТВ Хладон ФК-5-1-12 (CF3CF2C(O)CF(CF3)2) продолжительность (время) выпуска ГОТВ, не более 10 с.

F = 0,6 м2 площадь постоянно открытых проемов (кроме сбросного проема) в ограждающих конструкциях помещения (задано исходными данными, Таблица 4); К1 = 1,05 - коэффициент, учитывающий утечку ГОТВ из сосудов;


р1 = 14,08 кг/м3 - плотность газового огнетушащего вещества с учетом высоты защищаемого объекта относительно уровня моря для минимальной температуры в помещении Тм (рассчитан в п. 1.2);

Mp = 53,43 кг. - масса ГОТВ, предназначенная для создания в помещении огнетушащей концентрации (рассчитан в п. 1.2).

Расчёт площади проема для сброса избыточного давления в помещениях, защищаемых установками газового

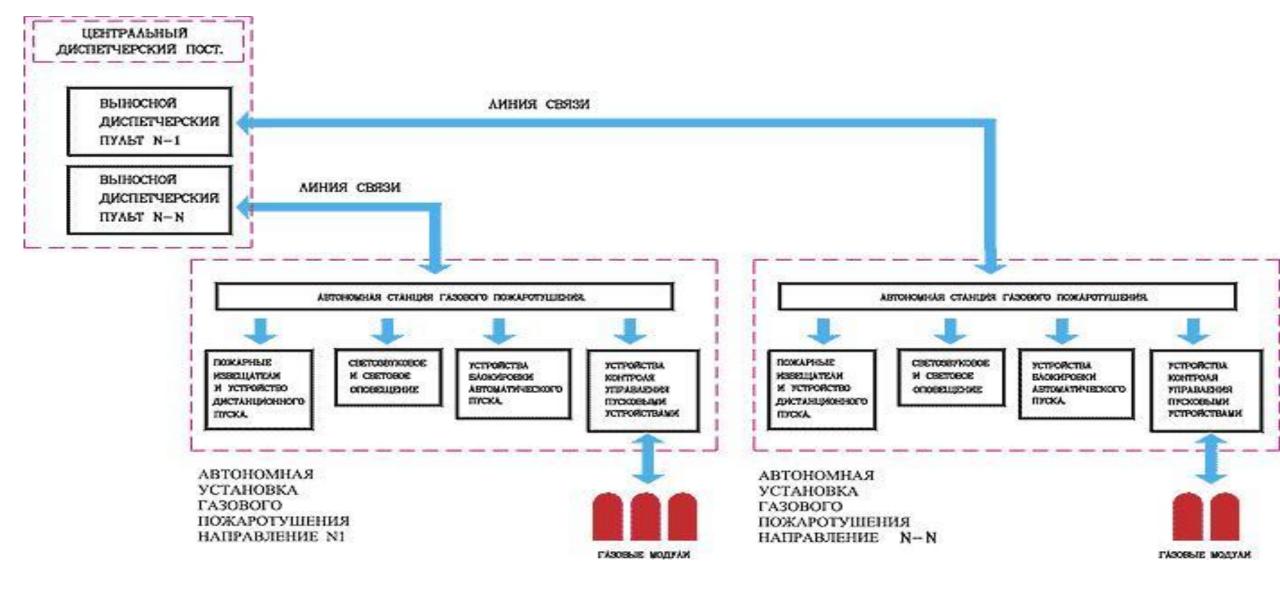
$$F_{\rm c} \geq rac{K_{
m p} K_{
m 3} M}{0.7 K_{
m h} au_{
m a} I^{
ho}} \sqrt{rac{P_{
m B}}{7 \cdot 10^6 P_{
m a} \left[\left(rac{P_{
m np} + P_{
m a}}{P_{
m a}}
ight)^{0.2857}} - \Sigma F$$

F с ≥ -0,59 В соответствии с Приложением Ж СП 485, если значение правой части неравенства меньше или равно нулю, то проём (устройство) для сброса избыточного давления не требуется. Соответственно расчёт показал, что проём (устройство) для сброса избыточного давления не требуется.

3. Разработка технологической части установки.

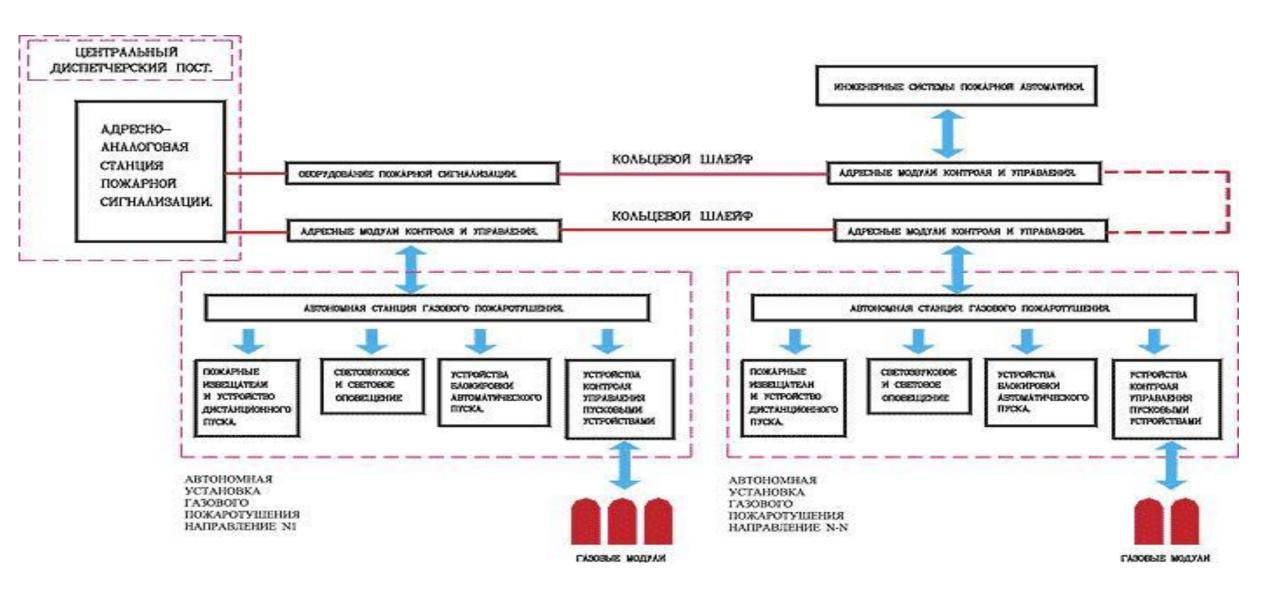
Подбор модулей осуществляется исходя из типоразмеров модулей, коэффициентов заполнения и особенностей защищаемых помещений.

Максимальный коэффициент заполнения для хладона 227ea — 1,1; для хладона 125 — 0,9, минимальный для всех хладонов — 0,5. Чем длиннее разводка, больше расстояние от модулей до защищаемого помещения, тем меньше коэффициент заполнения, так как требуется больше газавытеснителя.

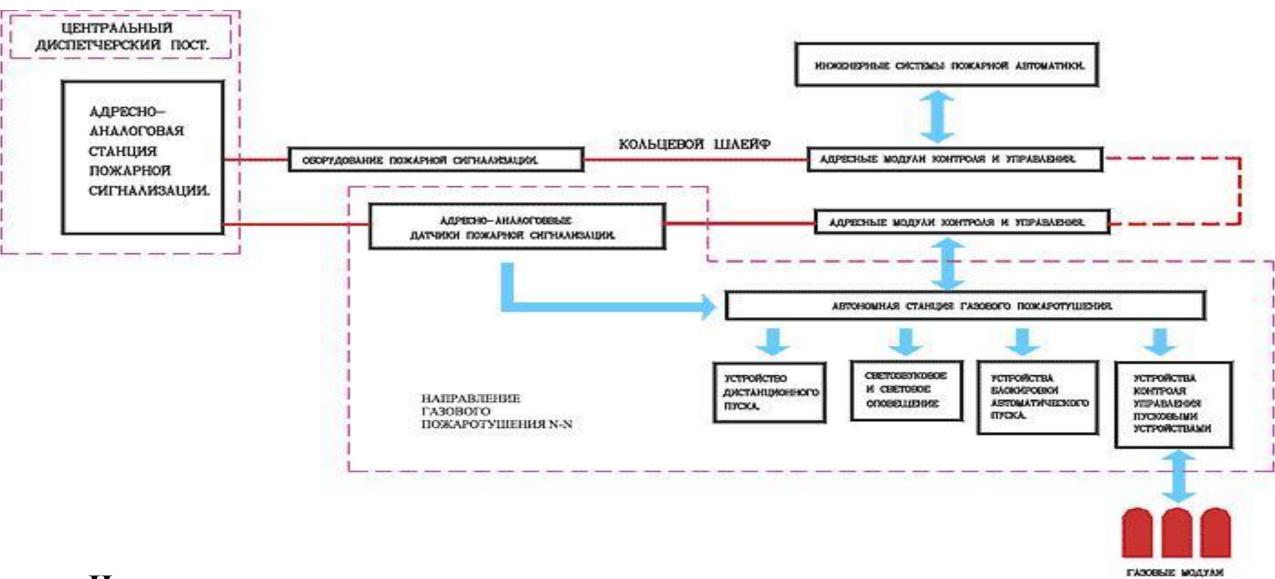

Окончательно выбор модулей с определенным заполнением для конкретного случая подтверждается гидравлическим расчетом.

4. Разработка электротехнической части установки

При выборе оптимального варианта управления автоматическими установками газового пожаротушения необходимо руководствоваться техническими требованиями, особенностями и функциональными возможностями защищаемых объектов.


Основные схемы построения систем управления установками газового пожаротушения:

- автономная система управления газовым пожаротушением;
- . децентрализованная система управления газовым пожаротушением;
- . централизованная система управления газовым пожаротушением.
 - Другие варианты являются производными от этих типовых схем.



Автономные установки управления газовым пожаротушением

Децентрализованное управление газовым пожаротушением на несколько

Централизованное управление газовым пожаротушением на несколько направлений

техническим требованиям

ЗАДАЧА

Произвести расчет массы газового огнетушащего вещества для установок газового пожаротушения и рассчитать площади проема для сброса избыточного давления в помещении.

Назначение

Первая цифра	На помещения						
задания							
0	Помещение для размещения электронно-вычислительных						
	машин (ЭВМ)						
1	Серверная						
2	Помещение хранения фотопленки						
3	ЦОД						
4	Помещение хранения ценностей ломбарда						
5	Помещение автоматической междугородней телефонной						
	станций (12 тыс. междугородных каналов)						
6	Склад декораций						
7	Помещение хранения музейных ценностей						
8	Помещение хранения служебных каталогов и описей в						
	библиотеки (500 тыс. единиц)						
9	Помещение хранения уникальных изданий, рукописей						

Таблица

1

Размер защищаемого помещения

Параметр	Вторая цифра задания									
	0	1	2	3	4	5	6	7	8	9
Длина, м	6	8	9	10	12	9	14	10	8	9
Ширина, м	5	4	7	5	6	6	4	9	8	9
Высота, м	3	2	2,5	4	3	2	4	2,5	3	4

Таблица 2

Наименование применяемого ГОТВ

	Третья цифра варианта								
	1,6	2, 7	3, 8	4, 9	5, 0				
Наименование	Хладон 125	Хладон	Хладон	Элегаз	ФК-5-1-12				
ГОТВ		318Ш	227ea		(CF,CF,C(O)CF(CF,),				

Таблица 3

Дополнительные исходные

Таблица

Исходные данные	Номер варианта по четвертой циф данны								4	
	1	2	3	4	5	6	7	8	9	0
Размещение защищаемого	150	350	450	200	400	450	1500	1750	1250	350
помещения над уровнем моря, м										
Площадь постоянно открытых										
проемов	0,6	0,2	0,3	0,15	0,25	0,1	0,5	0,4	0,3	0,25
Размещение постоянно открытых	равномерное	в нижней зоне	в верхней зоне	равномерное	в верхней зоне	в нижней зоне	в верхней зоне	в нижней зоне	в верхней зоне	равномерное
проемов	распределение			распределение						распределение
	по всей высоте			по всей высоте						по всей высоте
Минимальная температура пом.,	10	14	15	25	12	24	18	24	11	10
°C										

Задание для самостоятельной работы:

- 1. Физико-химические основы тушения газовыми составами составами.
- 2. Область применения установок газового пожаротушения.
- 3. Классификация пожаров.
- 4. Решение практической задачив соответствии с вариантом, зарепление навыков проектирования.