Операционная система История развития Основные функции Классификация

## Вычислительная система (компьютер)

Для того, чтобы ответить на вопрос, что представляет собой операционная система, необходимо сначала рассмотреть вопрос, из чего состоит вычислительная система (ВС) в целом!

Обобщенно структура ВС представлена справа на рисунке №1.



Рисунок 1 - Пользователь и обобщенная структура вычислительной системы

#### Вычислительная система (компьютер)

- 1. ВС состоит из того, что называют аппаратным или техническим обеспечением (hardware): процессоры, память, мониторы, накопители и т.д., объединенные магистральным соединением (шиной).
- 2. ВС состоит из программного обеспечения (ПО), в котором выделяют две части системной и прикладное.
- Системное ПО это набор программ, которые управляют компонентами, такими как процессор, коммуникационные и периферийные устройства и предназначены для обеспечения функционирования системы в целом.
- Прикладное ПО противопоставляется системному ПО, оно напрямую решает проблемы пользователя и предназначено для выполнения определённых пользовательских задач. ( как правило к прикладному ПО относят вспомогательные программы, игры, текстовые процессоры и т.п.)

- Операционная система (ОС) это программа, которая обеспечивает возможность рационального использования оборудования компьютера удобным для пользователя образом.
- ОС базовый комплекс компьютерных программ, обеспечивающий управление аппаратными средствами компьютера, работу с файлами, ввод и вывод данных, а также выполнение прикладных программ и утилит

Кроме различных определений ОС, два из которых приведены на предыдущем слайде, пользователи выделяют ряд различных «точек зрения» на ОС:

- 1. ОС как виртуальная машина;
- 2. ОС как система управления ресурсами;
- 3. ОС как защитник пользователей и программ;
- 4. ОС как постоянно функционирующее ядро.

**ОС как виртуальная машина**. Использование архитектуры персонального компьютера на уровне машинных команд является крайне неудобным для использования прикладными программами. Так, работа с диском предполагает знание внутреннего устройства его электронного компонента – контроллера для ввода команд вращения диска, поиска и форматирования дорожек, чтения и записи секторов и т.д. Работа по организации прерываний, работы таймера, управления памятью и т. д. также может требовать при программировании знания и учета большого количества деталей.

**ОС как система управления ресурсами**. В случае, если несколько программ, работающих на одном компьютере, будут пытаться одновременно осуществлять вывод на принтер, то можно получить «мешанину» строчек и страниц. ОС должна предотвращать такого рода хаос за счет буферизации подобной информации и организации очереди на печать. Не менее актуальная проблема – проблема управления ресурсами для многопользовательских компьютеров.

Таким образом, ОС как менеджер ресурсов осуществляет упорядоченное и контролируемое распределение процессоров, памяти и других ресурсов между различными программами.

**ОС как защитник пользователей и программ**. Если в вычислительной системе требуется обеспечение совместной работы нескольких пользователей, то возникает проблема организации их безопасной деятельности. Так, необходимо обеспечить:

- сохранность информации на диске, защиту от повреждения или удаления файлов;
- разрешение программам одних пользователей произвольно вмешиваться в работу программ других пользователей;
- пресечение попыток несанкционированного использования вычислительной системы.

**ОС как постоянно функционирующее ядро**. Можно говорить об ОС, как о программе (программах), постоянно работающей на компьютере и взаимодействующей с множеством прикладных программ. Очевидно, что такое определение верно лишь отчасти, т.к. во многих современных ОС постоянно работает на компьютере лишь часть ОС, которую принято называть ее ядром.

**Первое поколение** (1940-е – 50-е гг.). В эти годы ОС отсутствуют. Это была скорее научно-исследовательская работа в области вычислительной техники, а не регулярное использование компьютеров в качестве инструмента решения какихлибо практических задач из других прикладных областей.

Программирование осуществлялось исключительно на машинном языке. Все задачи организации вычислительного процесса решались вручную каждым программистом с пульта управления. Программа загружалась в память машины в лучшем случае с колоды перфокарт, а обычно с помощью панели переключателей

Вычислительная система выполняла одновременно только одну операцию (ввод-вывод или собственно вычисления). Отладка программ велась с пульта управления с помощью изучения состояния памяти и регистров машины.

Второе поколение (1950-е – 60-е гг.). С середины 50-х гг. начался следующий период в эволюции вычислительной техники, связанный с появлением новой технической базы – полупроводниковых элементов. Применение транзисторов вместо часто перегоравших электронных ламп привело к повышению надежности компьютеров. Теперь машины непрерывно могут работать достаточно долго, чтобы на них можно было возложить выполнение практически важных задач. Появляются первые настоящие компиляторы, редакторы связей, библиотеки математических и служебных подпрограмм. Упрощается процесс программирования.

Изменяется процесс отладки программ. Теперь пользователь приносит программу с входными данными в виде колоды перфокарт и указывает необходимые ресурсы.

**Третий период развития** вычислительных машин относится к началу 1960 – 70 гг. Вместо непосредственного чтения пакета заданий с перфокарт в память начинают использовать его предварительную запись, сначала на магнитную ленту, а затем и на диск. До начала этого периода вычислительные комплексы были, как правило, несовместимы. Каждый имел собственную ОС, свою систему команд и т.д. В результате программу, успешно работающую на одном типе машин, необходимо было полностью переписывать и заново отлаживать для выполнения на компьютерах другого типа.

Первым семейством программно совместимых компьютеров, построенных на интегральных микросхемах, стала серия машин IBM/360

К этому же периоду относится появление первых операционных систем реального времени (ОСРВ), в которых ЭВМ применяется для управления техническими объектами, такими, например, как станок, спутник, научная экспериментальная установка

**ОС четвертого поколения** (1970-80-е гг.) К этому периоду относится появление вытесняющей многозадачности (Preemptive scheduling) и использование концепции баз данных для хранения больших объемов информации для организации распределенной обработки.

В результате появляется возможность одновременной работы нескольких пользователей на одной компьютерной системе. У каждого пользователя для этого должна быть хотя бы одна программа в памяти. Чтобы уменьшить ограничения на количество работающих пользователей была внедрена идея неполного нахождения исполняемой программы в оперативной памяти. Основная часть программы находится на диске, и фрагмент, который необходимо в данный момент выполнять, может быть загружен в оперативную память, а ненужный – выкачан обратно на диск

Пятое поколение (с середины 1980-х гг. по н.в.). Период характеризуется уменьшением стоимости компьютеров и увеличением стоимости труда программиста. Появление персональных компьютеров позволило установить компьютер практически каждому пользователю на рабочем столе. Появились микропроцессоры, на основе которых создаются все новые и новые персональные компьютеры, которые могут быть использованы как автономно, так и в качестве терминалов более мощных вычислительных систем. Широкое внедрение получила концепция распределенной обработки данных. Развитием распределенной обработки данных стала технология «клиент – сервер», в которой серверный процесс предоставляет возможность использовать свои ресурсы клиентскому процессу по соответствующему протоколу взаимодействия.

## Основные функции ОС

Обзор этапов развития вычислительных и операционных систем позволяет все функции ОС условно разделить на две различные группы – интерфейсные и внутренние.

#### Интерфейсные:

- управление аппаратными средствами;
- управление устройствами ввода- вывода;
- поддержку файловой системы;
- поддержку многозадачности (разделение использования памяти, времени выполнения);
- ограничение доступа, многопользовательский режим работы, планирование доступа пользователей к общим ресурсам;
- интерфейс пользователя (команды в MS DOS, Unix; графический интерфейс в ОС Windows);
- поддержка работы с общими данными в режиме коллективного пользования;
- поддержка работы в локальных и глобальных сетях

## Основные функции ОС

К внутренним функциям ОС, которые выделились в процессе эволюции вычислительных и операционных систем, следует отнести:

- реализацию обработки прерываний;
- управление виртуальной памятью;
- планирование использования процессора;
- обслуживание драйверов устройств.

#### Состав ОС

Современные операционные системы имеют сложную структуру, каждый элемент которой выполняет определенные функции по управлению компьютером.

- Управление файловой системой. Процесс работы компьютера сводится к обмену файлами между устройствами. В операционной системе имеются программные модули, управляющие файловой системой.
- Командный процессор. Специальная программа, которая запрашивает у пользователя команды и выполняет их.
- Драйверы устройств. Специальные программы, которые обеспечивают управление работой устройств и согласование информационного обмена с другими устройствами, а также позволяют производить настройку некоторых параметров устройств. Технология «Plug ad Play» (подключай и играй) позволяет автоматизировать подключение к компьютеру новых устройств и обеспечивает их конфигурирование.
- Графический интерфейс. Используется для упрощения работы пользователя.
- Сервисные программы или утилиты. Программы, позволяющие обслуживать диски (проверять, сжимать, дефрагментировать и т. д.), выполнять операции с файлами (архивировать и т.д.), работать в компьютерных сетях и т.д.
- Справочная система. Позволяет оперативно получить информацию как о функционировании операционной системы в целом, так и о работе ее отдельных модулей.

## Классификация ОС

- Количество одновременно работающих пользователей
- Число процессов, одновременно выполняемых под управлением системы
- Количество поддерживаемых процессоров
- Разрядность кода ОС
- Тип интерфейса
- Тип использования ресурсов

## Классификация ОС Количество одновременно работающих пользователей

- однопользовательские
- многопользовательские (поддерживают одновременную работу на ЭВМ нескольких пользователей)

## Классификация ОС Число процессов, одновременно выполняемых под управлением системы

- однозадачные (режим выполнения только одной программы в отдельный момент времени)
- многозадачные (поддержка параллельного выполнения нескольких программ, существующих в рамках одной вычислительной системы, в один момент времени)

## Классификация ОС Количество поддерживаемых процессоров

- однопроцессорные
- многопроцессорные

## Классификация ОС Разрядность кода ОС

- 8-разрядные
- 16-разрядные
- 32-разрядные
- 64-разрядные

Разрядность показывает, какую разрядность внутренней шины данных центрального процессора способна поддержать операционная система, и определяет программы, с которыми она будет работать. Все современные операционные системы поддерживают 32-разрядный интерфейс прикладных программ. Разрядность кода интерфейса прикладных программ имеет непосредственное отношение к адресному пространству оперативного запоминающего устройства (ОЗУ). Адресное пространство памяти - это область адресов памяти, распределяющейся между операционной системой и данными; между видеопамятью, памятью BIOS, блоком информации запрещенного режима работы и т. д. Операционная система может поддерживать два режима работы центрального процессора: реальный и защищенный. В реальном режиме работы процессора, характерном для MS-DOS, все программы и данные располагаются в одной области оперативной памяти, т. е. пользователь может войти в системную программу и случайно испортить ее. Защищенный режим работы процессора поддерживается 32- разрядными операционными системами и позволяет хранить программы и данные отдельно в соответствии с их важностью в системе.

# Классификация ОС Тип интерфейса

- командные (текстовые)
- объектно-ориентированные (графические);

## Классификация ОС Тип использования ресурсов

- сетевые (управление ресурсами компьютеров, объединенных в сеть с целью совместного использования данных, и предоставляют мощные средства разграничения доступа к данным в рамках обеспечения их целостности и сохранности, а также множество сервисных возможностей по использованию сетевых ресурсов)
- локальные