Создание фитохитодезов, сопутствующие наблюдения и

ВЫВОДЫ Памяти Трескунова К. А. – создателя фитохитодезтерапии

Комаров Б.А.

По материалам публикаций с соавторами: Трескунов К.А., Погорельская Л.В., Зеленков В.Н., Албулов А. И., Фролова М.А., Соколова Н.И., Горошетченко А. В. и др.

С благодарностью за содействие: Коршиковой Ю.И., Широковой О.К., Трескунову В.К. и президенту Российского Хитинового Общества Варламову В. П.

Мукополисахариды в организмах животных и человека.

- Гиалуроновая кислота выделена из стекловидного тела глаза, синовиальной жидкости суставов, кожи и различных микроорганизмов.
- Хондроитинсульфаты связаны с белками и присутствуют в скелетных тканях хрящах, связках.
- Гепарин увеличивает время свертывания крови.
- **Кератсульфат** (состоит из Д-галактозы и N-ацетилглюкозамина-6-сульфата) входит в состав хрящей и роговицы глаза.

Ãèàëóðî í î âàÿ êèñëî òà

Õî í äðî èòèí ñóëüô àò

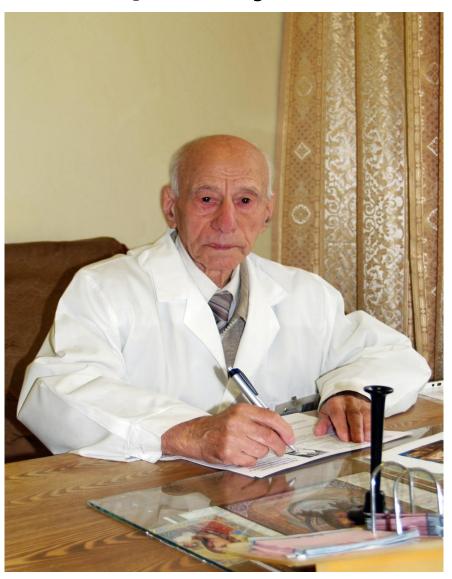
Ãåï àðèí

Õè
òė í ï ðè ÑÄ ~ 0
Õè
òî çài ï ðè ÑÄ > 50%

 $\tilde{N}\ddot{A}$ - \tilde{n} òåï åí ü äåàöåòèëèðî âàí èÿ $\tilde{N}\ddot{A}$ = $[n/(n+m)]^*100\%$

Достоинства хитозана

- Главное растворимость в подкисленной воде и возможность регулирования молекулярных характеристик.
- Иммуностимулирующее действие низкомолекулярной фракции, быстрое проникновение мономера и димера в кровь и лимфу при пероральном применении водорастворимых форм полифракционного состава.
- Активация ферментов и детоксикация.


- В свободной форме (без кислот) хитозан не растворим в воде и не бактероциден!
 В такой форме он не успевает полностью растворяться в желудке!
 - Наиболее полезны водорастворимые формы хитозана полифракциго состава.
 - Этот вывод подтверждается результатами многолетней практики К.А. Трескунова, его учеников и последователей.

Карп Абрамович Трескунов

Карп Абрамович Трескунов

- Объединение действия экстрактов растений на молекулярном уровне с хитозаном полифрак-ционного состава привело к синергетическому эффекту. Результаты статистической обработки данных по наблюдению в клинической практике явились основой 11 патентов РФ.
- В процессе разработки фитохитодезов обнару-жено отсутствие корректных отечественных данных о микроэлементном составе растений.

- Органический германий по важной роли в организме считается эссенциальным. До сих пор утверждается, что единственными источниками Ge и концентраторами являются женьшень, чеснок, алоэ, грибы так считают авторы книги «Иммунофармакология микроэлементов» Ал.Вл. Кудрин, Ан.Вик. Скальный и др. 2000 г. Стр. 386 и в статье Шохина И.Е. 2015 «Разработка и регистрация лекарственных средств»
- Исследования проведены с помощью массспектрометрии и атомно-эмиссионной спектрометрии с индуктивно связанной плазмой. Аппаратура: квадрупольный масс-спектрометр Nexion 300D и атомноэмиссионный спектрометр Optima 2000 DV (Perkin Elmer, США). Лаб. Скального А.В. И АИСЦ ИПТМ РАН в Черноголовке – Карандашев В.К.

No	Растение	Происхождение	Содержание
/п	Влажность 10–12 % вес		германия, мкг/г
1	Корни одуванчика	Красногорский р-н, 2015	0,02±0,003
2	Корни одуванчика	Краснодарский край,2014	0,01±0,005
3	Корни одуванчика	Калужская обл., 2014	$0,03\pm0,005$
4	Корни дягеля	Калужская обл., 2014	$0,06\pm0,009$
5	Корни солодки	Донбасс, 2013	0,01±0,0019
6	Корни шиповника	Таджикистан, 2014	< 0,0042
7	Тысячелистник	Калужская обл., 2014	0,006±0,0012
8	Корни женьшеня	Алтай, «Беловодье», 2013	< 0,0042
9	Женьшень 99 %	Бинг Хан, Китай, 2015	< 0,0042
10	Корень женьшеня	«Мир женьшеня», 2014	< 0,0042
11	Корень женьшеня	«Восточный мир», Китай	< 0,0042
12	Корень женьшеня	Алтайский край, 2015	< 0,0042

№/п	Элемент в тысяч.	Калужс. — Моск. 2015 — соврем	Красноярск ий ГТ-ЭИ	Стерлитамак (в мкг/г)	Гончаровой
		методы, в мкг/г	1980 г	1980 г	1997 г
1	Zn	28–19	34,8	101	0,68
2	Pb	14–16	0,1	4,7	-
3	Mg	1740 – 2160	1160	_	2600
4	Na	13–14	800	_	-
5	Fe	95–89	82	1609	200
6	Cu	9,6–6,2	1553	_	0,74
7	K	21950–19157	16180	_	35900
8	Ca	7880–7150	6060	_	11800
9	Cd	0,26-0,19	0,1	_	-
10	Ni	2,6–0,9	10,7	_	0,2
11	Se	< 0,05	-	-	6,25
12	Hg	< 0,006	Следы	8,67	-

- Видно, что независимо от происхождения в женьшене имеется в 2 – 15 раз меньше германия, чем в корнях одуванчика, дягиля, солодки и тысячелистника.
- 2-ая таблица имеется существенное различие данных, полученных современными методами, с имеющимися сведениями в литературе. Микроэлементный состав растения зеркало экологического состояния данной местности!!!
- Сведения о содержании природных радионуклидов в лекарственных растениях вообще отсутствуют.
- Подобные выводы сделаны и сотрудниками Томского ГМУн-та, изучавшими элементный состав аира болотного различного происхождения.

Изотоп	Содержание	Т –период		Содержание природного радионуклида, мкг/г	
элемента	изотопа, %	полураспада,			
	·	кол-во лет	Кал	тужская обл	Египет
⁴⁰ K	0,0118	1,3×10 ⁹	28270		16590
⁵⁰ V	0,24	6×10 ¹⁵	0,11		2,6
⁸⁷ Rb	27,85	5,7×10 ¹⁰	59		10,3
¹³⁸ La	0,089	$1,1\times10^{11}$	0,11		0,57
¹⁴² Ce	11,07	5×10 ¹⁵	0,18		1,2
¹⁴⁴ Nd	23,85	$2,4\times10^{15}$	0,111		0,60
¹⁴⁷ Sm	14,97	$1,1\times10^{11}$	0,021		0,12
¹⁵² Gd	0,20	$1,1\times10^{14}$	0,023		0,11
¹⁷⁶ Lu	2,59	3×10^{10}	< ΠO		0,0057
²⁰⁹ Bi	100	2×10 ¹⁸	0,0013	3	0,0020
Th	100	$1,4\times10^{10}$	0,0092	2	0,16
U	100	4,5×10 ⁹	0,0018	3	0,043

 Число атомов радиоактивного элемента, самопроизвольно распадающихся (Р), расчитывают по формулам:

 $P=\lambda A; \quad \lambda = (\ln 2)/T,$

где: A – общее число атомов в навеске, λ – константа распада, T – период полураспада.

(1 год имеет 525600 мин).

Усваивание 3,3 мкг радиоактивного изотопа калия из 1 г ромашки лекарственной (Калужской обл.) приводит к самопроизвольному радиоактивному распаду 50-и атомов в течение 1 минуты.

Применяя аналогичный подход можно показать, что за 1 мин самопроизвольно распадается 2 атома рубидия (ромашка из Калужской обл.) Для египетской ромашки – 1 атом тория за 1 мин и около 5 атомов урана в течение 1 часа.

- С точки зрения изменяющейся экологии и с целью защиты здоровья нации должен быть организован в регионах страны контроль полного микроэлементного состава растительного сырья, а также водоёмов, рек, источников и подземных вод.
 - Корректные данные об элементном составе лекарственных растений обогатят методы фитотерапии и сделают ее обосновано безопасной и эффективной как в традиционном ее применении, так и в решении задач биотической медицины.

• Биотрансмутация – это осуществление ядерных превращений!

- В России зарегистрирован патент № 25635511 от 08.2015 – биотрансмутация возможна под действием бактерий рода Thiobacillus в присутствии элементов переменной валентности.
- А какова роль лекарственных растений?

Благодарю за внимание!
В 21-ом веке технические возможности ВЫШЕ!
И надо использовать их на благо ЧЕЛОВЕКА!