Общая характеристика элементов главной подгруппы VI группы (подгруппы кислорода)

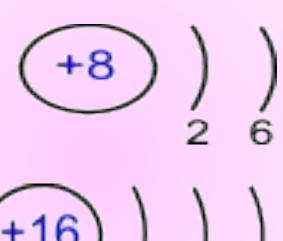
По аналогии с общей характеристикой элементов VIIA группы вспомните и выберите порядок действий:

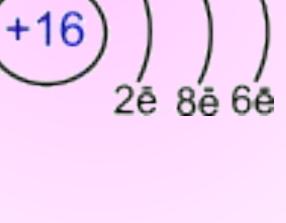
- 1.Общая формула и характеристика высшего оксида и образуемого гидроксида;
- 2. Положение элементов в ПС Д.И. Менделеева, особенности строения их атомов, семейство элементов.
- 3. Простые вещества и их свойства (Ме, Неме, переходный элемент)
- 4.Как пример привести строение атомов первых трех элементов
- 5. Изменение радиуса атома, ЭО, окислительных или восстановительных свойств в группе
- 6. Формула летучего водородного соединения и его свойства.

Опишите положение элементов халькогенов в Периодической системе химических элементов Д.И. Менделеева. К элементам 6 -А группы относят: кислород (8 O), серу (16 S), селен (34 Se), теллур (52 Те) и полоний (84 Ро).

«Халькогены»

Название группы «Халькогены» дословно переводится, как «рождающие руды» от греч. «халькос» медь и «генос» - род, происхождение. В природе халькогены действительно встречаются чаще всего в виде соединений меди (кроме кислорода) – это сульфиды, селениды меди. Сульфид меди (II) Селенид меди (I)




Селенид меди

Сульфид цинка

Строение атома

Поряд- ковый №	Элемент
8	Кислород (<mark>O</mark>)
16	Cepa (S)
34	Селен (Se)
52	Теллур (Те)
84	Полоний (Ро)

	Степени окисления	
	-2, -1, +1, +2	
	2, +2, +3, 4, +5, +6	
_	2, +4, +6	
-3, +	3, +4, +5	
	+2, +4	

Свойства элементов 6-А группы

Свойств	O	S	Se	Te	Po
Заряд ядра 2	8	16	34	52	84
Электронная коп- фигурация в основ- ном состоянии	[He]2s ² 2p ⁴	[Ne 3s ² 3p ⁴	[Ar]3d ¹⁰ 4s ² 4p ⁴	$[Kr]4d^{10}5x^25p^4$	[Xe]4f ¹⁴ 5d ¹⁶ 6s ² 6p
Число стабильных изотопов	3	4	6	8	O
Ковалентный раднус, нм	0,074	0,104	0,140	0,160	0,164
Энергия иопплации I ₁ , кДж/моль	1313,9	999,6	940,9	869,3	812,0
Энергия сродства к электрону, кДж/моль	141	200	195	190	183
Электроотрицатель- ность:	GESWOON (2000	NESSAN.	00	
по Полишту	3,44	2,58	2,55	2,10	2.00

Изменения свойств химических элементов и их соединений в группах:

В группах все элементы имеют сходное электронное строение. Различий в наполнении внешнего энергетического уровня электронами нет.

Меняется размер атома — *сверху вниз в* группе **радиусы атомов увеличиваются**!

Это означает, что

- 1) внешние электроны все слабее притягиваются к ядру атома;
- 2) возрастает способность атома отдавать электроны.
- 3) способность отдавать электроны=металлические свойства.

Формы существования соединений 6-А группы

Э	Прост. в-во	Н"Э	ЭО,	Н₂ЭО₄	CO
О	O ₂	H ₂ O	153	5E	-2, -1, 0, +1,+2
S	S	H ₂ S	SO ₃	H ₂ SO ₄	-2, 0, +2, +4, +6
Se	Se	H ₂ Se	SeO ₃	H ₂ SeO ₄	-2, 0, +2, +4, +6
Te	Te	H ₂ Te	TeO_3	H ₂ TeO ₄	-2, o, +2, +4, +6
Po	Po	H ₂ Po	PoO ₃	828	-2, 0, +2, +4, +6

КИСЛОРОД

- **Кислород О**₂ (К.В. Шееле 1772 г., Дж. Пристли 1774 г.)
- <u>Самый распространенный элемент</u> на Земле; в воздухе - 21% по объему;
- в земной коре 49% по массе;
- в гидросфере 89% по массе;
- в составе живых организмов-- до 65% по массе.

Химические свойства О₂

С неметаллами

$$C + O_2 \rightarrow CO_2$$

 $S + O_2 \rightarrow SO_2$
 $2H_2 + O_2 \rightarrow 2H_2O$

С металлами

2Mg + O₂ → 2MgO
2Cu + O₂
$$-^{to}$$
 → 2CuO

Со сложными веществами

$$4\text{FeS}_2 + 11O_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$$

 $2\text{H}_2\text{S} + 3\text{O}_2 \rightarrow 2\text{SO}_2 + 2\text{H}_2\text{O}$
 $\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}$

Дополните. Химические свойства

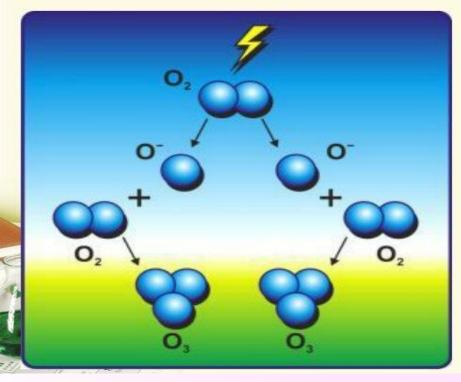
 O_2

- Взаимодействие веществ с кислородом называется...?.
- С кислородом реагируют все элементы, кроме..., во всех реакциях (кроме взаимодействия со...) кислород ...?

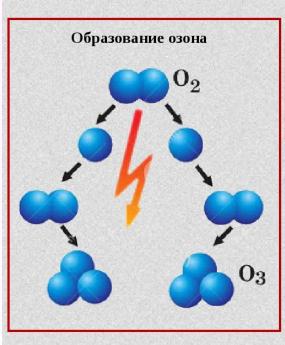
Ответ

Взаимодействие веществ с кислородом называется окисление. С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород -окислитель.

Горение в кислороде



ОЗОНпо отношению к кислороду является?


$O3OH - O_3$

- Газ
- Голубоватый
- Имеет запах свежести
- Растворим в воде
- Неустойчивое соединение

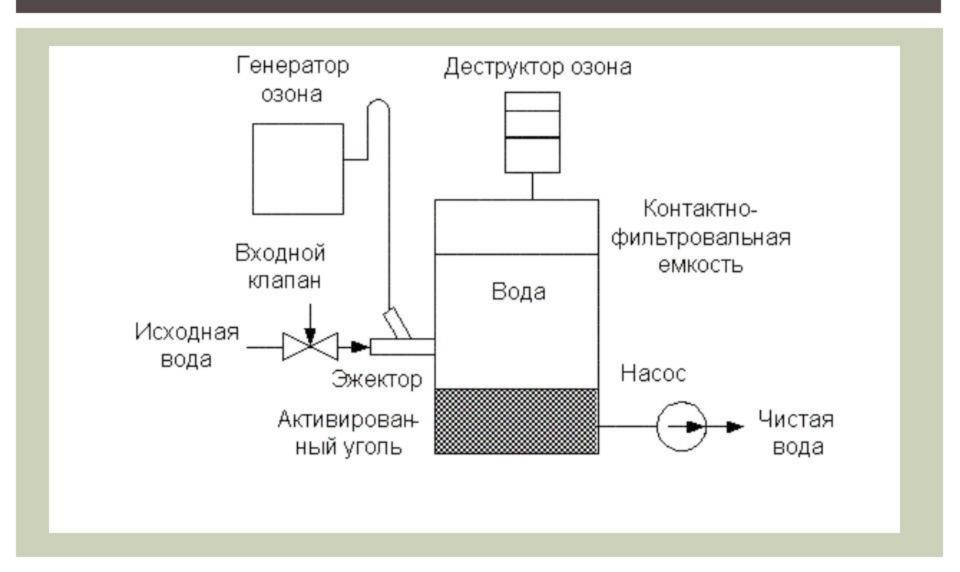
Какова роль озона в стратосфере? Что разрушает озоновый слой? Как летом вести себя на солнце, чтобы не получить жесткого облучения?

Составные части воздуха

Постоянные

- **-** азот,
- кислород,
- благородные газы.

Переменные


- углекислый газ,
- водяные пары,
- озон.

Случайные

- пыль,
- пыльца,
- оксиды серы,
- оксиды азота..

Постоянные составные воздуха	Объем	
Азот N2		
78,08% Кислород О2		
20,95% Аргон Ar		
0,93% Гелий Не		
0,00182% Неон Ne		
0,00053% Криптон Kr	0,00012%	

Оборудования для озонирования

Значение кислорода и озона в природе.

Равновесие всего живого в природе. O_3

Озоновый слой поглощает солнечные излучения, губительные для всего живого на ЗЕМЛЕ.

ОПАСНО!!!

ПРИМЕНЕНИЕ ОЗОНА

1. Стерилизация изделий медицинского назначения

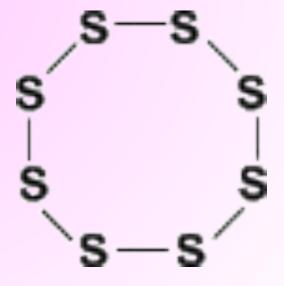
7. Дезинфекция помещений и одежды

6. Озонирование растворов медицинского назначения

5. Озонирование воздуха и воды

2. Отбеливание бумаги

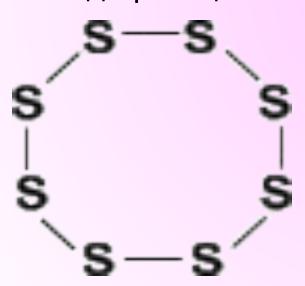
4. Лабораторный и промышленный синтез



CEPA S

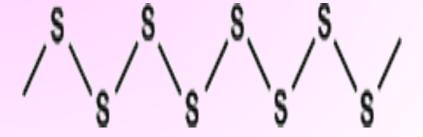
Физические свойства -

Твердое кристаллическое вещество желтого цвета, нерастворима в воде, водой не смачивается (плавает на поверхности), t°кип = 445°C



Аллотропия

1)ромбическая (а сера) - S8


t°пл. = 113°C; ρ = 2,07 г/см3

Наиболее устойчивая модификация.

3) пластическая - коричневая резиноподобная (аморфная) масса, неустойчива, при затвердевании превращается в ромбическую.

Химические свойства

Окислительные свойства серы $(S^0 + 2\bar{e} \to S^{-2})$

1) Сера реагирует со щелочными металлами без нагревания:

$$2Na + S \rightarrow Na_2S$$

с остальными металлами (кроме Au, Pt) - при повышенной t°:

$$2AI + 3S - \stackrel{t^0}{\longrightarrow} AI_2S_3$$

$$Zn + S - \stackrel{t^0}{\longrightarrow} ZnS$$

2) С некоторыми неметаллами сера образует бинарные соединения:

$$H_2 + S \rightarrow H_2S$$

 $2P + 3S \rightarrow P_2S_3$
 $C + 2S \rightarrow CS_2$

Восстановительные свойства сера проявляет в реакциях с сильными окислителями:

$$(S - 2\bar{e} \rightarrow S^{+2}; S - 4\bar{e} \rightarrow S^{+4}; S - 6\bar{e} \rightarrow S^{+6})$$

3) с кислородом:

$$S + O_2 - ^{t^o} \rightarrow S^{+4}O_2$$

 $2S + 3O_2 - ^{t^o;pt} \rightarrow 2S^{+6}O_3$

с галогенами (кроме йода):
 S + Cl₂ → S⁺²Cl₂

Соединения серы

Сероводород и сульфиды

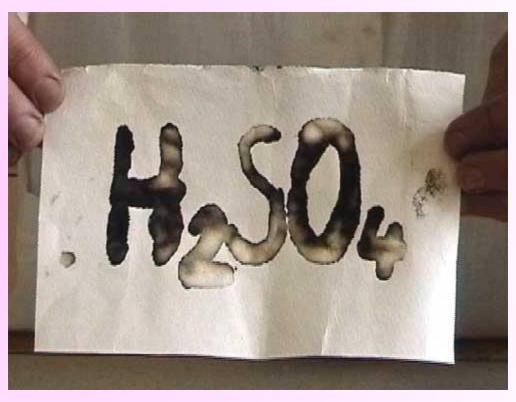
H₂S

Оксид серы (IV) <u>SO2</u>

Сернистая кислота H2SO3

Сульфиты и гидросульфиты Na2SO3 NaHSO3

Серная кислота и ее соли


H2SO4

Техника безопасности при работе с серной кислотой

Правила ТБ при работе с кислотами

Правила разбавления серной кислоты

Свойства разбавленной серной кислоты

Серная кислота – сильный электролит, поэтому хорошо диссоциирует в воде на ионы и может образовывать два типа солей.

Свойства разбавленной серной кислоты

- 1) С Металлами до <u>Н</u>
- 2) С основными оксидами
- 3) С растворимыми основаниями
- 4) С нерастворимыми основаниями
- 5) С солями (качественные реакции на сульфат-анион SO₄)

Составьте уравнения реакций в свете ТЭД

Дождевая вода – вред или польза?!

http://www.1tv.ru/promovideo/9952