ЭКОНОМИКА И ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА

д.э.н., проф. М.И. Самогородская

1. ОРГАНИЗАЦИЯ ПОДГОТОВКИ ПРОИЗВОДСТВА НОВОЙ ПРОДУКЦИИ

1.1 Особенности процесса создания и освоения новой продукции

🛮 Одним из главных факторов успеха деятельности предприятия в рыночных условиях является непрерывное обновление товаров и технологии производства, иными создание и освоение словами производства новой продукции. Новая продукция, создаваемая на базе новых идей, исследований и технических достижений, обеспечивает конкретный успех на рынках сбыта.

ОСОБЕННОСТИ ЦИКЛА СОНП

- 1. Сложность и масштабность разрабатываемых объектов и научных исследований по числу решаемых в процессе подготовки производства вопросов; по стоимости работы и длительности цикла ее выполнения; по числу коллективов и подразделений, участвующих в конкретной теме усложняют взаимосвязи и взаимозависимости отдельных стадий.
- 2. Комплексный характер выполняемых научных исследований и проектируемых изделий определяет участие исследователей и разработчиков, специализирующихся в разных отраслях науки, в связи, с чем усложняется система управления коллективами.
- 3. Вероятностный характер процессов подготовки производства, обусловленный новизной и неопределенностью конечных результатов;
- 4. Поиск новых решений, использование новых идей, приемов, неполнота исходной информации являются причинами значительных отклонений фактического хода подготовки производства и достигнутых результатов от намеченных планом.

- 5. Уникальность процессов научных исследований и проектно-конструкторских разработок, постоянная сменяемость проектируемых объектов затрудняет выработку стереотипных методов выполнения работ и является причиной многовариантности принимаемых решений. Вместе с тем, в каждой НИР и ПКР имеется большое число повторяющихся частей, видов и элементов работ.
- 6. Динамичность НИР и ПКР проявляется с одной стороны в ускорении темпов исследований и разработок, а с другой стороны в ускорении морального старения научных результатов.
- 7. Результативность НИР и ПКР во многом зависит от личностных факторов: таланта, способностей, заинтересованности, умения, а также характера, наклонностей научных и инженерно-технических работников, участвующих в подготовке производства новых изделий.

КРИТЕРИИ ОПТИМИЗАЦИИ СИСТЕМЫ СОЗДАНИЯ И ОСВОЕНИЯ НОВОЙ ПРОДУКЦИИ

- □ технический уровень изделия;
- □ сроки создания и освоения;
- □ увеличение объемов производства;
- □ увеличение товарной номенклатуры;
- снижение издержек при подготовке производства и в процессе самого производства;
- снижение издержек при эксплуатации изделия

ЦИКЛ СОНП

1.2. Организация научно-исследовательских работ (НИР)

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЕ РАБОТЫ (НИР) -это

- это совокупность процессов и работ, целью которых является изучение и открытие законов развития природы и общества и создание на этой базе более прогрессивных средств труда и предметов потребления.
- □ Процесс выполнения всех видов исследований можно условно разделить на **три стадии**: подготовительную, основную и заключительную, границы которых строго не определены и в значительной степени условны.

КЛАССИФИКАЦИЯ НИР

ВИД НИР	ВИДЫ ОСНОВНЫХ ФОНДОВ
1. Фундаментальные (результативность -5-10%)	Новые знания об основополагающих закономерностях развития, свойствах и явлениях материального мира, включая и социальные процессы, происходящие в обществе; открытие новых явлений и закономерностей; расширение теоретических знаний, существующих в исследуемой области; разработка новых теоретических положений
2. Поисковые	Создание новых направлений развития техники и технологий, обеспечивающих значительное повышение производительности труда и качества выпускаемых изделий; установление возможностей использования открытого явления, свойства или принципа в определенной практической сфере, в изделиях определенного назначения;
3. Прикладные (80-90% затрат на НИР должны давать положительный результат)	Разрешение конкретных научных проблем, обеспечивающих создание новых конструктивных решений, изделий, технологий, методик (например, испытаний), систем, материалов.

ЭТАПЫ НИР

- 1. Разработка технического задания НИР
- 2. Техническое предложение
- 3. Теоретические и экспериментальные исследования
- 4. Технический отчет
- 5. Сдача и приемка НИР

Итогом НИР является научный и (или) научно-технический результат - продукт научной и (или) научно-технической деятельности, содержащий новые знания или решения и зафиксированный на любом информационном носителе. Кроме того, результатом НИР может быть научная и (или) научно-техническая продукция - результат интеллектуальной деятельности, предназначенный для реализации.

К научным результатам относятся:

- 1. Открытие это установление неизвестных ранее объективно существующих закономерностей, свойств и явлений материального мира.
- **2. Изобретение** это техническое решение в любой области хозяйствования, обладающее новизной или существенным отличием и дающее положительный эффект. Как правило, изобретение является результатом выполненных прикладных НИР.
- В 3. Рациональное предложение это техническое решение, являющееся новым и полезным для предприятия, которому оно подано и предусматривающее изменение конструкции изделий, технологии производства, применяемой техники, изменение состава материала.

1.3. Организация проектно-конструкторских работ (ПКР)

ПРОЕКТНО-КОНСТРУКТОРСКИЕ РАБОТЫ (ПКР) - это

□ это комплекс мероприятий, обеспечивающих поиск технических решений, удовлетворяющих заданным требованиям, их оптимизацию и реализацию в виде комплекта конструкторских документов и опытного образца, подвергаемого циклу испытаний на соответствие требованиям технического задания.

- □ Основной целью ПКР является создание новых и совершенствование имеющихся изделий в заданные сроки и с наименьшими затратами, обеспечивая при этом высокие параметры качества.
- □ Основная задача ПКР обоснование технической возможности создания изделия с высокими техническими параметрами качества при максимальной экономической эффективности его производства и эксплуатации; создание комплекта конструкторской документации для серийного производства продукции.

ЭТАПЫ ПКР

- 1. Техническое задание ПКР (Т3)
- 2. Техническое предложение
- 3. Эскизный проект
- 4. Технический проект
- 5. Разработка рабочей документации (рабочий проект)
- 6. Предварительные испытания
- 7. Ведомственные испытания
- 8. Отработка документации по результатам испытаний

1.4. Организация технологической подготовки производства (ТПП)

ТЕХНОЛОГИЧЕСКАЯ ПОДГОТОВКА ПРОИЗВОДСТВА - это

- □ совокупность взаимосвязанных процессов, обеспечивающих технологическую готовность предприятия к выпуску продукции необходимого качества при установленных сроках, объеме производства и затратах (ГОСТ14.004-83).
- Под *технологической готовностью производства* понимается наличие на предприятии полных комплектов конструкторской и технологической документации и средств технологического оснащения, необходимых для производства заданного объема продукции.

ХАРАКТЕРИСТИКА ЭТАПОВ ТПП

- 1. Техническое задание осуществляется организационнотехнический анализ существующих методов и средств ТПП; разрабатываются предложения по организации, планированию и управлению производством.
- 2. Технический проект приводится общая структурная схема подготовки производства и организационная структура служб, основные положения по организации работ; выполняется унификация и стандартизация форм документов; разрабатываются технические задания на автоматизацию решения задач по ТПП.
- 3. Рабочий проект излагается информационная модель ТПП, положения и должностные инструкции; даются решения по типизации и стандартизации технологических процессов, унификации технологической оснастки; выдается рабочая документация для решения задач на ЭВМ.

СОДЕРЖАНИЕ ТПП

Работа	Характеристика
1. Предварительная	Выполнение технологического контроля чертежей и проработка их
проработка	на технологичность; определение объемов работ, сроков, затрат,
технической	экономической эффективности, возможности обеспечения
документации	материальными, трудовыми и финансовыми ресурсами.
2. Разработка	Распределение номенклатуры продукции между цехами и
межцеховых	подразделениями предприятия. Разработка технологических
технологических	маршрутов движения объектов производства. Установление
маршрутов	последовательности прохождения заготовок, деталей, сборочных
(расцеховка)	единиц по производственным подразделениям.
3. Разработка	Разработка рабочих технологических процессов на базе типовых
операционных	решений и процессов с индивидуальными технологическими
процессов	решениями. Разработка техпроцессов изготовления и контроля
(осуществляется в	деталей, сборки и испытаний и всей прочей технологической
серийном и массовом	документации. Осуществление типизации технологических
производстве)	процессов, разработка базовых и групповых процессов. Технико-
	экономическое обоснование технологических процессов.

СОДЕРЖАНИЕ ТПП

Работа	Характеристика
4. Выбор	Выбор и обоснование универсального, специального,
оборудования	агрегатного и нестандартного оборудования. Выдача заданий
	на проектирование этого оборудования.
5. Выбор и	Выбор необходимого специального, универсального и
технологическое	унифицированного оснащения. Проектирование
конструирование	(технологическое конструирование) оснастки. Технико-
оснастки	экономическое обоснование выбора и применения оснастки.
6. Нормирование	Установление пооперационных технических норм времени
	всех технологических процессов. Расчеты норм расходов
	материалов (подетальные и сводные). Определение
	потребности в трудовых и материальных ресурсах.
7. Сдача	Отладка технологического процесса производства
технологического	продукции, оборудования и оснастки. Доведение
процесса	технологического процесса до производственных
	подразделений

Ключевой задачей технико-экономического проектирования в составе ПКР и ТПП является обеспечение технологичности и эффективности нового изделия, а, следовательно, его конкурентоспособности на рынке.

ТЕХНОЛОГИЧНОСТЬ – это придание любому изделию такой формы и выбор для него таких материалов, которые обеспечивают наиболее простое, экономичное его изготовление, при условии выполнения изделием заданных функций.

ПОКАЗАТЕЛИ ТЕХНОЛОГИЧНОСТИ ИЗДЕЛИЯ

- трудоемкость изготовления абсолютная (на одно изделие) или относительная (на единицу установленной мощности, производительности, другого показателя);
- материалоемкость или масса конструкции абсолютная или относительная;
- прудоемкость подготовки изделия к функционированию;
- □ степень конструктивной стандартизации и унификации;
- производство новой продукции;
- □ себестоимость и отпускная цена новой продукции;
- прибыль и рентабельность производства.

ВИДЫ ТЕХНОЛОГИЧНОСТИ ИЗДЕЛИЯ

- □ Производственная мехнологичность степень соответствия конструкции изделия оптимальным производственно-технологическим условиям его изготовления при заданном объеме выпуска. Обеспечение производственной технологичности заключается в сокращении затрат средств и времени на ПКР, технологической подготовки производства (ТПП) и на процессы изготовления продукции, в том числе контроля и испытаний.
- **П** Эксплуатационная технологичность проявляется в сокращении затрат времени и средств на техническое обслуживание и ремонт изделия.

ПОРЯДОК ОБЕСПЕЧЕНИЯ ТЕХНОЛОГИЧНОСТИ ИЗДЕЛИЯ

- подбор и анализ исходных материалов, необходимых для оценки технологичности конструкции;
- □ уточнение объема выпуска изделия;
- анализ показателей технологичности аналогичных изделий;
- определение показателей производственной и эксплуатационной технологичности и сравнение их с показателями существующих конструкций;
- разработка рекомендаций по улучшению показателей технологичности.

1.5. Организационная подготовка производства (ОПП)

ОРГАНИЗАЦИОННАЯ ПОДГОТОВКА ПРОИЗВОДСТВА (ОПП) - это

комплекс процессов и работ, направленных на разработку и реализацию проекта организации производственного процесса изготовления нового изделия; системы организации и оплаты труда, обеспечения материально-технического производства; нормативной базы внутризаводского планирования с целью создания необходимых условий для высокопроизводительного ускоренного освоения и выпуска новой продукции требуемого качества

СОДЕРЖАНИЕ ОПП

Наименование работ	Содержание работ
1. Разработка	Выбор форм организации производства, специализации
проекта	цехов и участков, кооперирования между ними.
организации	Определение потребности в площадях и оборудовании для
основного	выпуска нового изделия.
производственного	Составление планировок цехов и участков.
процесса	Разработка проекта реконструкции цехов.
	Разработка или совершенствование систем оперативно-
	производственного планирования.
2. Разработка	Составление планов движения предметов труда в
проекта	производстве.
технического	Выбор и определение необходимых средств
обслуживания	внутризаводского транспорта и тары.
основного	Разработка проектов организации складского хозяйства,
производства	ремонтного и инструментального обслуживания.
	Выбор форм контроля производства новой продукции.

СОДЕРЖАНИЕ ОПП

Наименование работ	Содержание работ	
3. Разработка	Создание рационального проекта разделения и кооперации	
организации и	труда.	
оплаты труда	Разработка проекта организации трудового процесса,	
	организации обслуживания рабочих мест, организации режима	
	труда и отдыха. Расчет трудоемкости.	
	Подготовка и переподготовка кадров.	
	Выбор и обоснование системы оплаты труда и систем	
	премирования рабочих и специалистов при освоении новых	
	изделий и в серийном производстве.	
4. Организация	Определение потребности в материальных ресурсах.	
материально-	Составление заявок и заказов на специальное оборудование,	
технического	оснастку, материалы и комплектующие изделия.	
обеспечения	Выбор поставщиков и установление с ними договорных связей.	
производства и	Реализация планов снабжения для выпуска продукции	
сбыта новой	первых образцов и серий.	
продукции	Налаживание связей с потребителями.	

СОДЕРЖАНИЕ ОПП

Наименование работ	Содержание работ
Создание	Расчет материальных, трудовых и календарно-
нормативной базы для	плановых нормативов. Калькулирование
внутризаводского	себестоимости и установление цены на новое
планирования	изделие.
	Определение размеров нормативов запасов
	оборотных средств.

2. ОСВОЕНИЕ ПРОИЗВОДСТВА НОВОЙ ПРОДУКЦИИ

2.1. Характеристика процесса освоения новой продукции

ОСВОЕНИЕ НОВОЙ ПРОДУКЦИИ - это

производственный процесс, в течение которого проходит необходимая отладка процесса; технологического осуществляется организация планирование производства с целью выпуска новой продукции в заданном объеме и с соответствующими техникоэкономическими показателями.

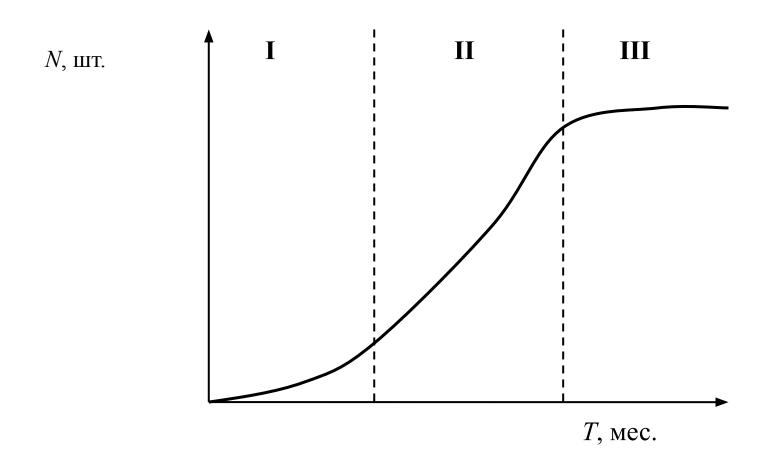
ХАРАКТЕРНЫЕ ПРИЗНАКИ ПРОЦЕССА ОСВОЕНИЯ НОВОЙ ПРОДУКЦИИ

- нестабильность, динамичность техникоэкономических показателей производства;
- неопределенность результатов вследствие вероятностного характера данного процесса.

Продукция считается освоенной, если она выпускается в установленном объеме и обладает требуемыми технико-экономическими параметрами. Началом освоения следует считать выпуск установочной серии, которая изготавливается по документации серийного производства с целью подтверждения готовности производства к выпуску продукции в заданных объемах и с установленными требованиями.

ВИДЫ ОСВОЕНИЯ

- Л. Техническое освоение осуществляется еще в предпроизводственный период и характеризуется достижением технических параметров, которые установлены для изделия в технических условиях и стандартах.
- □ 2. Производственное освоение представляет собой производственный процесс, в течение которого предприятие выходит на проектный объем выпуска новой продукции.
- **3.** Экономическое освоение осуществляется одновременно с производственным. Окончанием экономического освоения следует считать достижение проектного уровня экономических показателей новой продукции, прежде всего трудоемкости и себестоимости изделия. Теоретически оно может закончиться раньше производственного, но, как правило, предприятие выходит на намеченный уровень экономических показателей позже, чем достигнут проектный уровень выпуска изделий.


ЭТАПЫ ОСВОЕНИЯ НОВОГО ИЗДЕЛИЯ

□ 1. Этап развертывания освоения (I) — заключается в выпуске первых промышленных партий нового изделия - (установочной и контрольной). На данном этапе осваивается производственная мощность первой очереди. Выпуск продукции нарастает медленно, с большими потерями, возможны остановки производства. В этот период создаются условия для ускоренного выпуска продукции: устраняются технические и организационные недоработки, появляются устойчивые навыки труда у работников.

ЭТАПЫ ОСВОЕНИЯ НОВОГО ИЗДЕЛИЯ

- **2.** Этап интенсивного освоения (II) характеризуется тем, что объем производства нарастает быстрыми темпами, производственные подразделения обеспечены необходимыми материалами и оснасткой, рабочие приобрели необходимые навыки. Однако в результате бурного роста объема производства создается перегрузка рабочих мест, выявляются скрытые недостатки в конструкции и технологии изделия, нерациональные приемы в организации производства и труда, в материально-техническом снабжении. недостатки производства, не достигнув намеченного максимума, замедляется. Чтобы выйти проектную мощность, на нужно провести дополнительные мероприятия.
- **3.** Этап затухания освоения (III) характеризуется тем, что производство выходит на максимальную мощность, устраняются обнаруженные недостатки, оптимизируются производственные процессы. Производственное освоение заканчивается достижением проектного уровня выпуска новых изделий, себестоимости и трудостисти.

ЭТАПЫ ОСВОЕНИЯ НОВОГО ИЗДЕЛИЯ

2.2 Организация перехода на выпуск нового изделия

Критерием эффективности метода перехода на выпуск нового изделия являются минимальные потери производства.

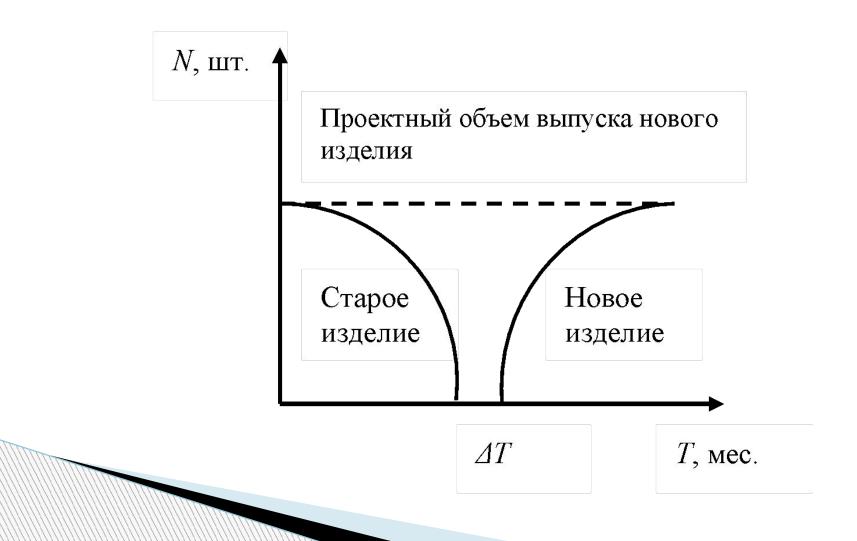
Выбор метода перехода зависит от ряда факторов:

- □ типа производства;
- отработанности и готовности к производству технологических процессов и оборудования;
- производства; производства; производства; производства;
- возможностей создания параллельно действующего производства;
- характеристик осваиваемого изделия: технического уровня изделия, отличий его от снимаемого с производства, степени конструктивной унификации.

МЕТОДЫ ПЕРЕХОДА НА ВЫПУСК НОВОЙ ПРОДУКЦИИ различаются

- осваиваемых изделий (либо наличием перерыва между окончанием выпуска заменяемого и началом выпуска осваиваемого изделия);
- □ соотношением темпов снижения выпуска снимаемой с производства продукции и темпов нарастания выпуска осваиваемой продукции.

1) ПОСЛЕДОВАТЕЛЬНЫЙ МЕТОД ПЕРЕХОДА НА ВЫПУСК НОВОЙ ПРОДУКЦИИ

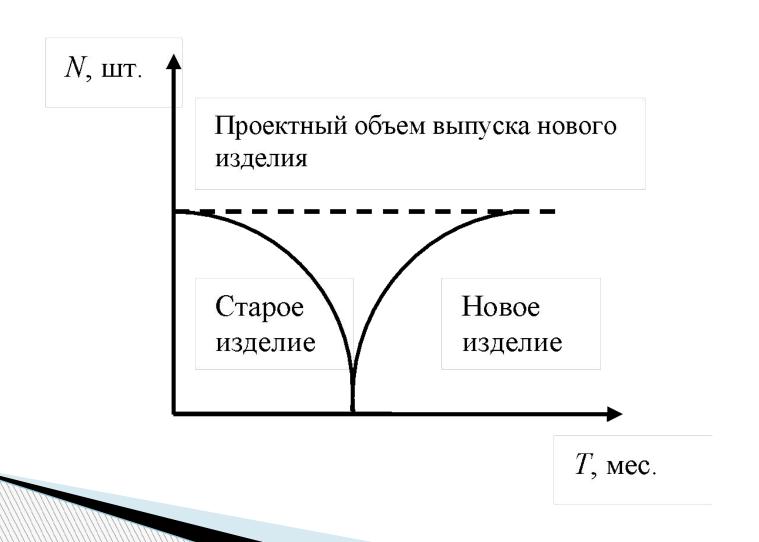

характеризуется тем, что производство новой продукции начинается после прекращения выпуска продукции, снимаемой с производства. Техническая и организационная подготовка выполняется, как правило, заранее, время выпуска старой продукции. зависимости от наличия значительного перерыва между окончанием выпуска старой продукции и началом выпуска новой выделяют прерывный и непрерывный варианты метода.

ПРЕРЫВНО-ПОСЛЕДОВАТЕЛЬНЫЙ МЕТОД ПЕРЕХОДА НА ВЫПУСК НОВОЙ ПРОДУКЦИИ

после прекращения выпуска старого изделия на тех же производственных площадях выполняются работы по перепланировке и монтажу технологического оборудования и транспортных средств, а после их завершения начинается освоение производства нового изделия.

В организационно техническом отношении это самый простой вариант перехода на выпуск нового изделия, но в то же время, самый неэффективный, так как существенные потери в суммарном выпуске продукции за период остановки производства долго не удается компенсировать.

ПРЕРЫВНО-ПОСЛЕДОВАТЕЛЬНЫЙ МЕТОД ПЕРЕХОДА НА ВЫПУСК НОВОЙ ПРОДУКЦИИ

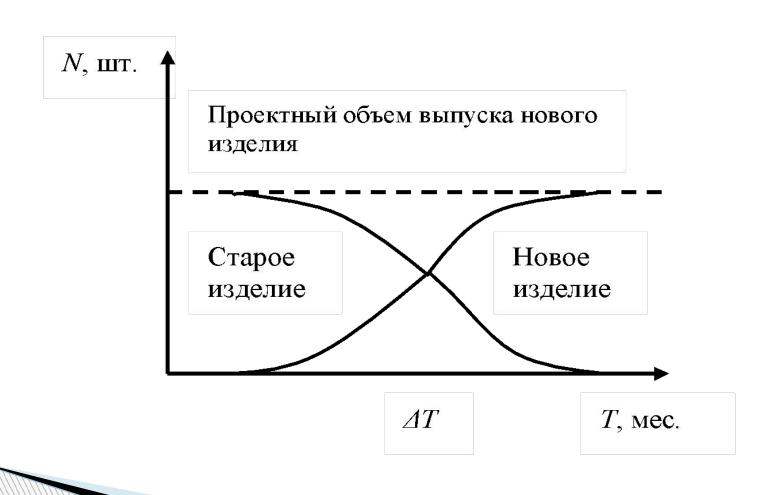


НЕПРЕРЫВНО-ПОСЛЕДОВАТЕЛЬНЫЙ МЕТОД ПЕРЕХОДА НА ВЫПУСК НОВОЙ ПРОДУКЦИИ

выпуск осваиваемого изделия начинается сразу же после прекращения выпуска изделия, снимаемого с производства. Непрерывно-последовательный метод представляет собой, по сути, плановый переход на новую модификацию одного и того же изделия.

В организационно-технологическом отношении этот вариант освоения значительно сложнее, так как требует высокой степени готовности производства к выпуску нового изделия (наличия резервных производственных площадей для подготовки к выпуску нового изделия). Потери в суммарном выпуске продукции также имеют место, но они значительно меньше, чем в предыдущем варианте.

НЕПРЕРЫВНО-ПОСЛЕДОВАТЕЛЬНЫЙ МЕТОД ПЕРЕХОДА НА ВЫПУСК НОВОЙ ПРОДУКЦИИ

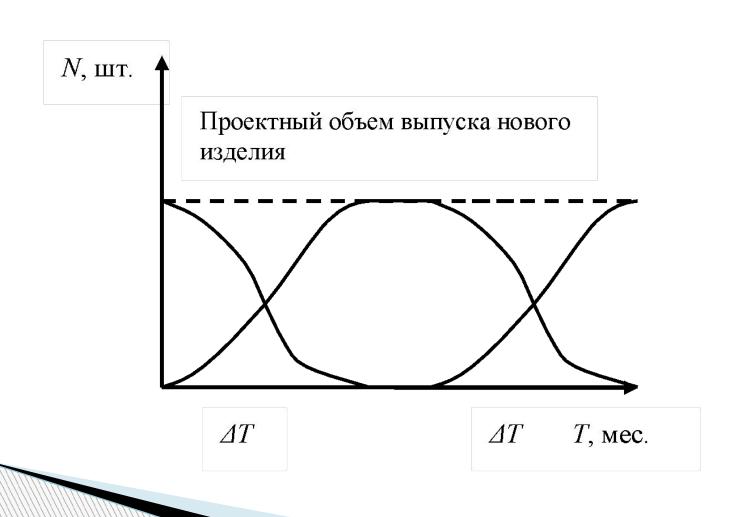


2) ПАРАЛЛЕЛЬНЫЙ МЕТОД ПЕРЕХОДА НА ВЫПУСК НОВОЙ ПРОДУКЦИИ

характеризуется одновременным производством старых и новых изделий. Для этого метода характерно постепенное замещение снимаемой с производства продукции вновь осваиваемой. Одновременно с сокращением объемов производства старой модели происходит нарастание выпуска новой.

Преимущество метода состоит в том, что удается значительно сократить (а в отдельных случаях и полностью ликвидировать) потери в суммарном выпуске продукции при освоении нового изделия. Но для этого требуются, как правило, дополнительные производственные рабочие, т.к. трудоемкость осваиваемых изделий выше, чем снимаемых с производства.

ПАРАЛЛЕЛЬНЫЙ МЕТОД ПЕРЕХОДА НА ВЫПУСК НОВОЙ ПРОДУКЦИИ

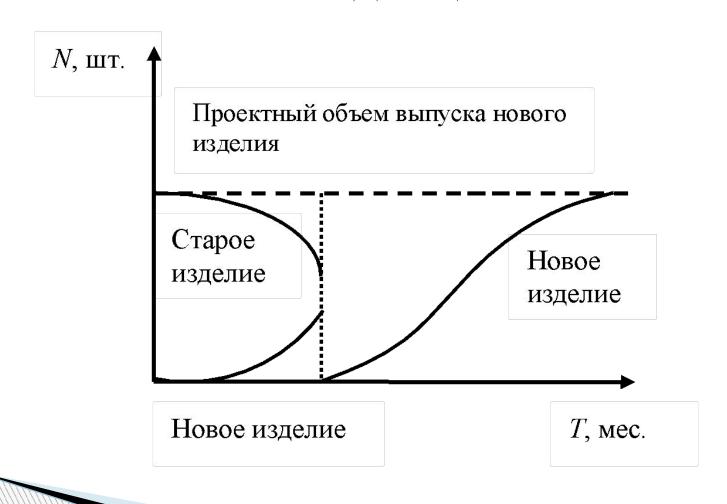


ПАРАЛЛЕЛЬНО-ПОЭТАПНЫЙ МЕТОД ПЕРЕХОДА НА ВЫПУСК НОВОЙ ПРОДУКЦИИ

Переход осуществляется в несколько этапов, в ходе которых осваивается выпуск, так называемых, переходных моделей изделия, отличающихся от предшествующей модели конструкцией отдельных узлов и агрегатов. На каждом из этапов происходит обновление не конечной продукции предприятия, а только отдельных ее элементов.

Преимущество метода заключается в том, что удается избежать коренной реконструкции предприятия, обеспечить на каждом из этапов равномерный выпуск продукции, снизить затраты на освоение производства. Однако процесс обновления при этом растягивается во времени, что может привести к преждевременному моральному устареванию осваиваемого изделия.

ПАРАЛЛЕЛЬНО-ПОЭТАПНЫЙ МЕТОД ПЕРЕХОДА НА ВЫПУСК НОВОЙ ПРОДУКЦИИ


3) ПАРАЛЛЕЛЬНО-ПОСЛЕДОВАТЕЛЬНЫЙ МЕТОД ПЕРЕХОДА НА ВЫПУСК НОВОЙ ПРОДУКЦИИ

широко применяется в условиях массового производства при освоении нового изделия, существенно отличающегося по конструкции от снимаемого с производства.

На предприятии создаются дополнительные мощности (участки, цехи), на которых начинается освоение нового изделия: отрабатываются технологические процессы, проводится квалифицированная подготовка персонала, организуется выпуск первой партии новой продукции. В этот период освоения в основном производстве продолжается выпуск изделий, подлежащих замене

После завершения начального периода освоения происходит кратковременная остановка, как в основном производстве, так и на дополнительных участках, в течение которой осуществляется перепланировка подразделений: оборудование дополнительных участков передается в подразделения основного производства. По завершении работ в них организуется выпуск нового изделия.

ПАРАЛЛЕЛЬНО-ПОСЛЕДОВАТЕЛЬНЫЙ МЕТОД ПЕРЕХОДА НА ВЫПУСК НОВОЙ ПРОДУКЦИИ

2.3. Динамика производственных затрат в период освоения производства. Кривые освоения

Зависимость между нарастанием выпуска нового изделия и изменением экономических показателей

В массовом производстве:
$$t_i = t_1 T_i^{-b}$$
,

где t_i - затраты труда на изготовление i-го изделия с мо мента начала выпуска данного вида продукции, нормо-ч;

 $t_{\it l}$ - затраты труда на единицу изделия в начале освоения, нормо-ч;

 T_i — наименование i- го отрезка времени периода освоения (например, 6-й месяц с начала освоения, 3-й год и т.д.);

b - коэффициент крутизны кривой освоения.

В серийном производстве: $t_i = t_I N_i^{-b}$, где N_i - порядковый номер i-го изделия с начала выпуска.

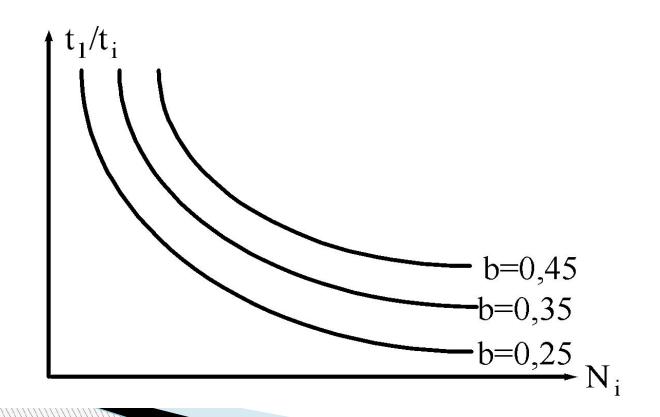
Зависимость между нарастанием выпуска нового изделия и изменением экономических показателей

$$t_i = t_k \left(\frac{N_i}{N_k}\right)^{-b},$$

где t_i - трудоемкость производства N_i изделия, нормо-ч;

 t_k — трудоемкость производства конечного изделия в конце периода освоения, нормо-ч;

 N_i - число изделий, выпущенных с начала освоения до і- ой величины, шт.;


 N_k - число изделий, выпущенных в период освоения всего, шт.;

b - коэффициент крутизны кривой освоения.

КРИВЫЕ ОСВОЕНИЯ НАКОПЛЕННОГО ОПЫТА) - это

(КРИВЫЕ

кривые, характеризующие динамику затрат в период освоения новых изделий

КОЭФФИЦИЕНТ КРУТИЗНЫ КРИВОЙ ОСВОЕНИЯ (b) -

характеризует темп относительного снижения экономических показателей и зависит от новизны и сложности конструкции и технологического процесса, от качества проведенной технической подготовки производства, от степени готовности предприятия к освоению изделия.

Установлено, что при каждом удвоении числа выпущенных в процессе освоения изделий затраты труда, как правило, снижаются на определенную постоянную величину, равную значению показателя K_{OCB} , который называется коэффициентом освоения.

КОЭФФИЦИЕНТ ОСВОЕНИЯ -

показывает, во сколько раз уменьшается трудоемкость при каждом удвоении числа выпущенных изделий

$$K_{OCB} = \frac{t_{2i}}{t_i} = \frac{t_1(2N_i)^{-b}}{t_1(N_i)^{-b}} = 2^{-b}$$

где t_i - трудоемкость і-го изделия, нормо-ч; t_{2i} - трудоемкость і-го изделия после удвоения числа выпускаемых изделий, нормо-ч.

ВЗАИМОСВЯЗЬ КОЭФФИЦИЕНТА КРУТИЗНЫ КРИВОЙ ОСВОЕНИЯ И КОЭФФИЦИЕНТА ОСВОЕНИЯ

$$b = -\frac{\lg K_{OCB}}{\lg 2} = \frac{\lg K_{OCB}}{0,301}$$

Чем меньше коэффициент освоения (и соответственно больше коэффициент крутизны b), тем больше величина потерь, которые несет предприятие при освоении новых изделий. Проектная трудоемкость при этом достигается позже, а период освоения затягивается.

Затраты труда на производство изделия в процессе освоения представляют собой сумму необходимых и добавочных затрат

Необходимые затраты рассчитываются на основе прогрессивных, технически обоснованных норм в условиях устоявшегося производства:

$$T_{_{\scriptscriptstyle H}} = t_{_{\scriptscriptstyle k}} \cdot N_{_{\scriptscriptstyle k}}.$$

Добавочные затраты - это повышенные расходы, которые возникают в процессе освоения нового изделия и обусловлены особенностями этого процесса:

$$\Delta t_i = (t_i - t_k) N_i$$
.

ПУТИ СНИЖЕНИЯ ЗАТРАТ НА ПРОИЗВОДСТВО ПРОДУКЦИИ В ПЕРИОД ОСВОЕНИЯ

- □ внедрение специализированного оборудования;
- □ ускорение освоения технологической оснастки;
- □ совершенствование технологического процесса;
- □ совершенствование конструкции изделия (детали);
- □ обучение рабочих новым операциям;
- □ улучшение организации производства и труда и пр.

2.4. Планирование процессов СОНП. Система сетевого планирования и управления

СИСТЕМА СЕТЕВОГО ПЛАНИРОВАНИЯ И УПРАВЛЕНИЯ - это

это комплекс графических и расчетных методов, организационных мероприятий, контрольных приемов, обеспечивающих моделирование, анализ и динамическую перестройку плана выполнения сложных проектов и разработок. Основной плановый документ ССПУ - сетевой график.

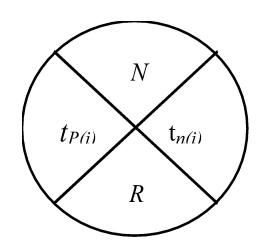
Сетевой график представляет собой информационнодинамическую модель, в которой изображаются взаимосвязи и результаты всех работ.

РАБОТА — это:

- тот или иной процесс (например, изготовления чего-либо),
 требующий затрат труда;
- □ ожидание, требующее затрат времени;
- зависимость, указывающая, что начало данной работы зависит от выполнения предыдущей.

Графически работа обозначается стрелкой →, если это процесс или ожидание (наличие затрат времени). Стрелка, выражающая только зависимость одной работы от другой, означает фиктивную работу и изображается пунктирной линией. Фиктивная работа имеет нулевую временную оценку.

СОБЫТИЕ - это момент завершения работы, после которого должна начаться следующая работа. Событие - это конечный результат одной или нескольких работ. Событие не имеет продолжительности во времени.


Исходное событие - начало выполнения комплекса работ.

Завершающее событие - достижение конечной цели комплекса работ.

Промежуточное событие (или просто событие) - результат одной или нескольких входящих в него работ.

Граничное событие - событие, являющееся общим для двух или нескольких первичных или частных сетей.

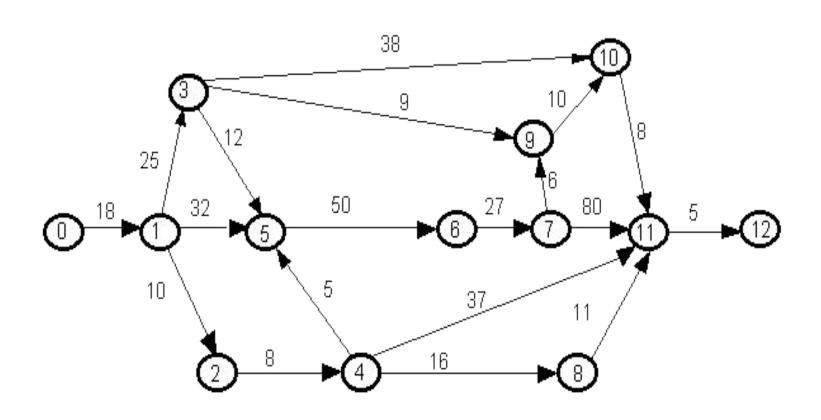
События изображаются кружками, разделенными на четыре сектора.

N - порядковый номер события;

 $t_{P(i)}$ - ранний срок свершения события; $t_{n(i)}$ - поздний срок свершения события; R - резерв времени для свершения данного события.

Любая последовательность работ в сети, в которой конечное событие каждой работы этой последовательности совпадает с начальным событием следующей за ней работы называется *путем*.

Путь от исходного до завершающего события называется полным. Путь от исходного до данного промежуточного события называется путем, предшествующим этому событию. Путь, соединяющий какие-либо два события *i* и *j*, из которых ни одно не является исходным или завершающим, называется путем между этими событиями. Наибольший по продолжительности путь сетевого графика называется критическим путем.


ПРАВИЛА ПОСТРОЕНИЯ СЕТЕВОГО ГРАФИКА

- 1) график должен быть простым, без лишних пересечений;
- 2) стрелки (работы) должны быть направлены слева направо;
- 3) между двумя событиями может быть изображена только одна работа;
- 4) для параллельно выполняемых работ вводятся дополнительное событие и зависимость (фиктивная работа);
- 5) в сетевом графике не должно быть тупиков, т.е. событий, из которых не выходит ни одной работы (за исключением завершающего события) или в которые не входит ни одна работа (за исключением исходного события);
- 6) в сетевом графике не должно быть замкнутых контуров;
- 7) в сетевом графике не должно быть событий, обозначенных одинаковыми кодами;
- 8) сетевой график должен кодироваться так, чтобы стрелка (работа) выходила из события, закодированного меньшим числовым значением.

ЭТАПЫ ПОСТРОЕНИЯ СЕТЕВОГО ГРАФИКА

- 1) составляется полный перечень работ;
- 2) по вышеназванным правилам на основе перечня работ строится сетевой график;
- 3) сетевой график кодируется, то есть проставляются номера событий и работ, составляется перечень событий;
- 4) рассчитываются параметры сетевого графика.

ПРИМЕР ПОСТРОЕНИЯ СЕТЕВОГО ГРАФИКА

1. Ранний срок свершения события — это срок, необходимый для выполнения всех работ, предшествующих данному событию. Определяется, как максимальный путь от исходного события до данного. Ранние сроки считаются слева - направо (от i к j):

$$t_{p(j)} = max [t_{p(i)} + t_{(i-j)}],$$

где $t_{p(i)}$ - ранний срок предшествующего события; $t_{(i-j)}$ - продолжительность работы (i-j).

Ранний срок свершения исходного события принимается равным нулю.

2. Поздний срок свершения события - это такой срок наступления события, превышение которого вызовет аналогичную задержку наступления завершающего события.

Определяется, как разница между продолжительностью критического пути и минимальным путем от завершающего события до данного. Поздние сроки считаются от завершающего события к исходному, т.е. справа — налево (от j к i). Поздний срок завершающего события принимается равным его раннему сроку: $t_p = t_n$.

$$t_{n(i)} = min [t_{n(j)} - t_{(i-j)}].$$

- 3. Продолжительность критического пути $(L_{\kappa p})$ соответствует раннему сроку свершения (t_p) или позднему сроку свершения (t_p) завершающего события.
- **4. Резерв времени события** $(R_{(i)})$ это такой промежуток времени, на который может быть отсрочено наступление этого события без нарушения сроков завершения комплекса работ в целом. Определяется, как это разница между поздним и ранним сроком свершения события

$$R_{(i)} = t_{p(i)} - t_{n(i)}$$

Для событий, лежащих на критическом пути, резерв равен нужо.

5. Раннее начало работы i-j ($t_{ph(i-j)}$) - соответствует раннему сроку свершения начального события:

$$t_{ph(i-j)} = t_{p(i)}$$

6. Раннее окончание работы i-j ($t_{po(i-j)}$) - определяется как сумма раннего срока свершения начального события и продолжительности самой работы i-j:

$$t_{po(i-j)} = t_{p(i)} + t_{(i-j)}.$$

7. Позднее начало работы i-j ($t_{nh(i-j)}$) - определяется как разница между поздним сроком свершения конечного события j и продолжительностью самой работы i-j:

$$t_{nh(i-j)} = t_{n(j)} - t_{(i-j)}.$$

8. Позднее окончание работы i-j ($t_{no(i-j)}$) - определяется поздним сроком свершения конечного события работы j:

$$t_{no(i-j)} = t_{n(j)}$$

9. Полный резерв времени работы i-j ($R_{(i-j)}^{n}$) — это максимальный период времени, на который можно увеличить продолжительность данной работы, не изменяя при этом продолжительности критического пути:

$$R_{(i-j)}^{n} = t_{no(i-j)} - t_{po(i-j)} = t_{nh(i-j)} - t_{ph(i-j)}$$

10. Свободный резерв времени работы i-j ($R_{(i-j)}^{\ \ c}$) - это максимальный период времени, на который можно увеличить ее продолжительность или отсрочить ее начало, не изменяя при этом ранних сроков последующих работ, при условии, что начальное событие этой работы наступило в свой ранний срок:

$$R_{(i-j)}^{\ \ c} = R_{(i-j)}^{\ \ n} - R_{(j)}$$
.

ОПТИМИЗАЦИЯ СЕТЕВОЙ МОДЕЛИ

Оптимизация проводится по времени и по ресурсам. *Цель оптимизации по времени* - сократить продолжительность критического пути. *Цель оптимизации по ресурсам* - выровнять загрузку исполнителей и сократить численность занятых.

Сокращения продолжительности критического пути можно достичь путем перевода исполнителей работ некритического пути на выполнение работ критического пути.

ПУТИ ОПТИМИЗАЦИИ СЕТЕВОЙ МОДЕЛИ

- 1) изменение топологии сетевой модели, т.е. разделение какой-либо работы на несколько работ, выполняемых параллельно;
- 2) перераспределение ресурсов, т.е. перевод части исполнителей с ненапряженных работ на работы критического пути, выполняемые параллельно с первыми работниками тех же специальностей. В результате такого перераспределения продолжительность ненапряженных работ увеличится, а продолжительность работ критического пути уменьшится;
- 3) изменение срока начала и окончания работ ненапряженных путей в пределах полного резерва работы $R_{(i-j)}^{\quad n}$.