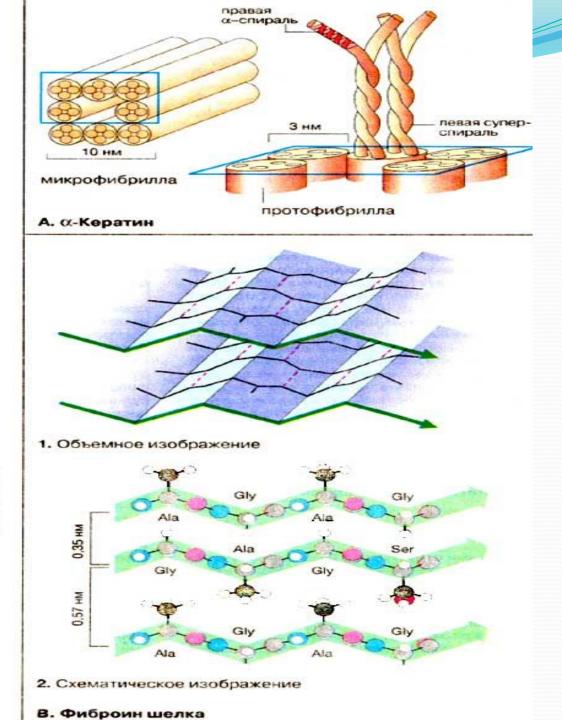

Классификация белков

В любом живом организме содержатся тысячи белков, выполняющих разнообразные функции. Чтобы дать представление о многообразии белков, на схеме с увеличением примерно 1 х 1500000 приведен общий вид молекул (с соблюдением формы и размера) ряда вне- и внутриклеточных белков. Функции, выполняемые белками, распределяются примерно следующим образом.

 Тройная спираль (фрагмент)


Gly -	Arg -	Hyp -
- Gly -	Gin	Arg
- Gly -	Pro	Hyp
- Gly -	Pro -	Gin -
- Gly -	Ala	Arg -
Gly	×	Y

2. Типовой триплет

3. Тройная спираль (вид сверху)

Б. Коллаген

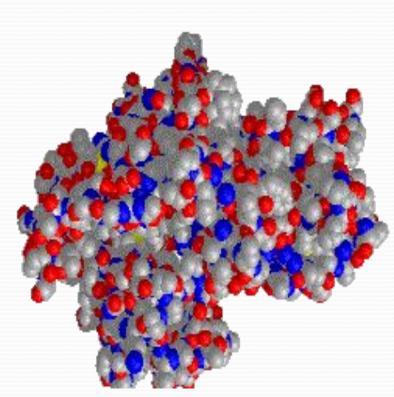
ПЕПТИДЫ, природные или синтетические соединения, молекулы которых построены из остатков α-аминокислот, соединенных между собой пептидными (амидными) связями C(O) NH. Могут содержать в молекуле также неаминокислотную компоненту (например, остаток углевода). По числу аминокислотных остатков, входящих в молекулы пептидов, различают дипептиды, трипептиды, тетрапептиды и т.д. Пептиды, содержащие до 10 аминокислотных остатков, называются олигопептидами, содержащие более 10 аминокислотных остатков полипептидами Природные полипептиды с молекулярной массой более 6 тыс. называются белками.

Историческая справка

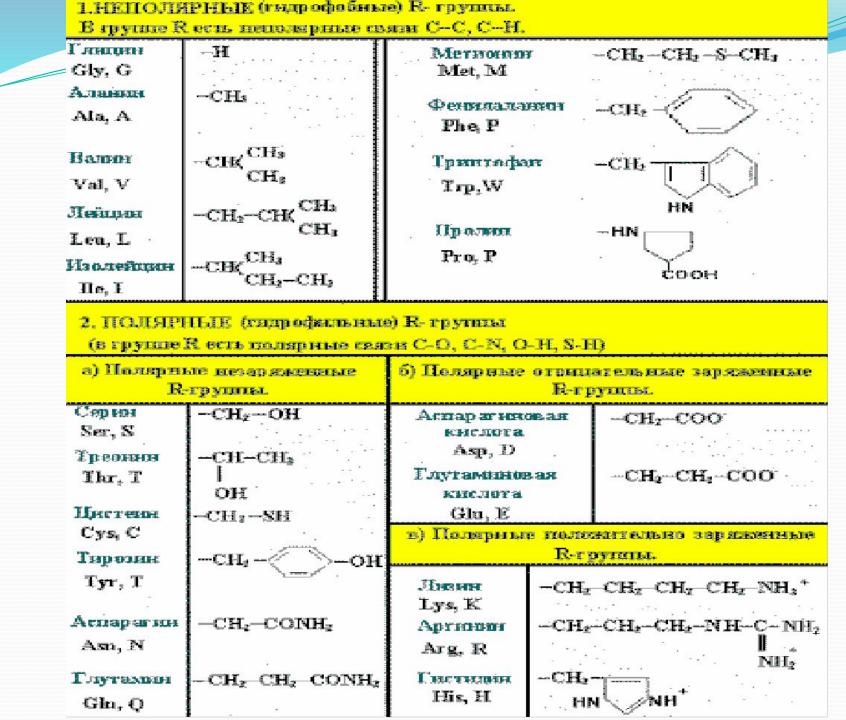
Впервые пептиды были выделены из ферментативных гидролизатов белков. Термин "пептиды" предложен Эмиль Фишером. Первый синтетический пептид получил Т. Курциус в 1881 Э. Фишер к 1905 разработал первый общий метод синтеза пептидов и синтезировал ряд олигопептидов различного строения. Существенный вклад в развитие химии пептидов внесли ученики Э. Фишера Э. Абдергальден, Г. Лейке и М. Бергман. В 1932 М Бергман и Л. Зервас использовали в синтезе пептидов бензилоксикарбонильную группу (карбобензоксигруппу) для защиты α-аминогрупп аминокислот, что ознаменовало новый этап в развитии синтеза пептидов. Полученные N-защищенные аминокислоты (N-карбобензоксиаминокислоты) широко использовали для получения различных пептидов, которые успешно применяли для изучения ряда ключевых проблем химии и биохимии этих В-В, напр, для исследования субстратной специфичности протеолитических ферментов.

Историческая справка

С применением N-карбобензоксиаминокислот были впервые синтезированы природные пептиды (глукатион, карнозин и др.). Важное достижение в этой области разработанный в начале 50-х гг. Р. Воганом и др. синтез пептидов методом смешанных ангидридов (подробно методы синтеза пептидов рассмотрены ниже). В 1953 В. Дю Виньо синтезировал первый пептидный гормон окситоцин. На основе разработанной Р. Меррифилдом в 1963 концепции твердофазного пептидного синтеза были созданы автоматические синтезаторы пептидов. Получили интенсивное развитие методы

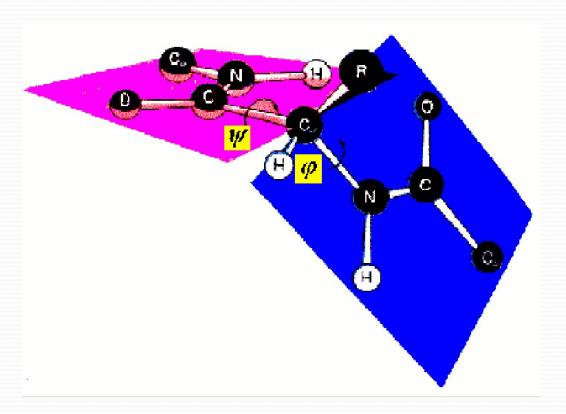

Получили интенсивное развитие методы контролируемого ферментативного синтеза пептидов. Использование новых методов позволило осуществить синтез гормона инсулина и других.

Историческая справка


Успехи синтетической химии пептидов были подготовлены достижениями в области разработки таких методов разделения, очистки и анализа пептидов, как ионнообменная хромотография, электрофорез на различных носителях, гельфильтрация, высокоэффективная жидкостная хромотография (ВЭЖХ), иммуно-химический анализ и др. Получили большое развитие также методы анализа концевых групп и методы ступенчатого расщепления пептидов. Были, в частности, созданы автоматические аминокислотные анализаторы и автоматические приборы для определения первичной структуры пептидов- секвенаторы.

Белки либо протеины количественно доминируют над всеми иными макромолекулами живой клетки. Белки принимают участие во всех биологических процессах, выполняя многообразные функции:

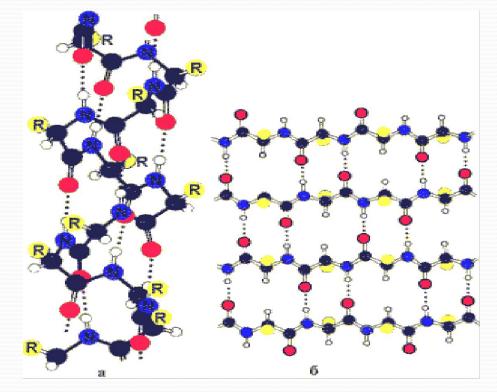
- ферментативный катализ;
- транспорт и накопление;
- сокращение и перемещение;
- иммунная оборона;
- передача информации в клетку;
- регуляция метаболизма;
- механическая опора и пр.


Пептидные взаимосвязи возникают при взаимодействии α -аминогруппы одной аминокислоты с α карбоксильной категорией иной аминокислоты: Пептидная взаимосвязь - данная амидная ковалентная взаимосвязь, соединяющая аминокислоты в цепочку. А значит, пептиды - данные цепочки аминокислот. Полипептидная цепь имеет явное направление, т.к. у неё различные концы - или независимая α -аминогруппа (Nконец), или независимая α -карбоксильная категория (Сконец). Изображение очередности аминокислот в цепи наступает с N-концевой аминокислоты. С неё ведь наступает нумерация аминокислотных остатков. В полипептидной цепи постоянно повторяется категория: -NH-CH-CO-. Данная категория формирует пептидный OCTOB.

Конформация полипептидных цепей

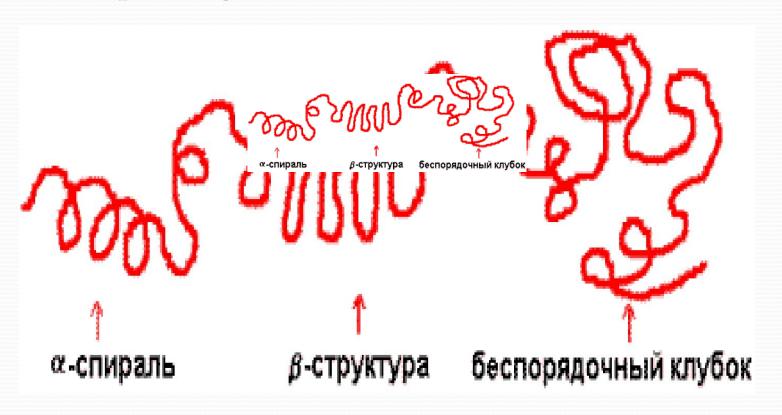
Функциональные качества белков ориентируются их конформацией, т.е. месторасположением полипептидной цепи в месте. Уникальность конформации для любого белка ориентируется его первичной текстурой. В белках различают 2 значения конформации пептидной цепи вторичную и третичную текстуру. Вторичная текстура белков обусловлена возможностью групп пептидной взаимосвязи к водородным взаимодействиям: C=O....HN.

По двум сторонам твердой пептидной взаимосвязи вполне вероятно вращение: у и ј -углы, определяющие вращение что же касается одинарных взаимосвязей С а -С и С а -N.


Пептидная цепь покупает не свободную, а жестко явную конформацию, фиксируемую водородными взаимосвязями. Известны некоторое количество приемов укладки полипептидной цепи:

- α -спираль возникнет внутрицепочечными водородными взаимосвязями меж NH-группой одного остатка аминокислоты и СО-группой четвертого от нее остатка;
- β -структура (складчатый лист) возникнет
 межцепочечными водородными взаимосвязями либо
 взаимосвязями меж участками одной полипептидной
 цепи изогнутой в обратном направлении;
 - беспорядочный клубок данное участки, лишенные верной, периодической пространственной организации. Хотя конформация данных участков кроме того жестко обусловлена аминокислотной последовательностью.

Конформация полипептидных цепей

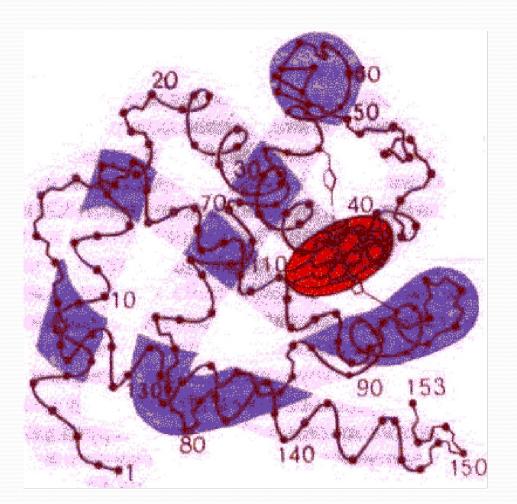

Содержание α -спиралей и β -структур в различных белках различно: у фибриллярных белков - лишь α - спираль либо лишь β -складчатый лист; а у глобулярных белков - отдельные фрагменты полипептидной цепи: или а α -спираль, или β -складчатый лист, или хаотичный

клубок.


Конформация полипептидных цепей

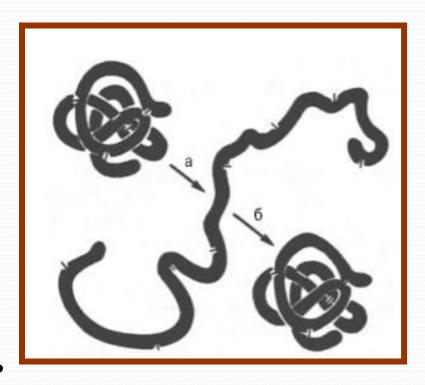
В одинаковом белке имеют все шансы существовать все 3 приема укладки полипептидной цепи:

Третичная текстура глобулярных белков предполагает ориентацию в месте полипептидной цепи, содержащей α -спирали, β-структуры и участки в отсутствии периодической текстуры (хаотичный клубок). Вспомогательное складывание скрученной полипептидной цепи образует компактную текстуру. Данное случается, для начала, в следствии взаимодействия меж боковыми цепями аминокислотных остатков. Присутствует некоторое количество видов взаимодействия меж R-группами, как правило ковалентного нрава.


Третичная структура

Связи, стабилизирующие третичную текстуру:

- электростатические силы притяжения меж R-группами, несущими противоположно заряженные ионогенные категории (ионные взаимосвязи);
- водородные взаимосвязи меж полярными (гидрофильными) R-группами;
- гидрофобные взаимодействия меж неполярными (гидрофобными) Rгруппами;
- дисульфидные взаимосвязи меж радикалами 2 молекул цистеина. Данные взаимосвязи ковалентные. Они увеличивают устойчивость третичной текстуры, хотя порой считаются неотъемлемыми для верного скручивания молекулы. В ряде белков им предоставляется возможность как говорится отсутствовать.



Пространственная текстура миоглобина. В полипептидной цепи показаны лишь а углеродные атомы. Красным показан гем (небелковый составляющих).

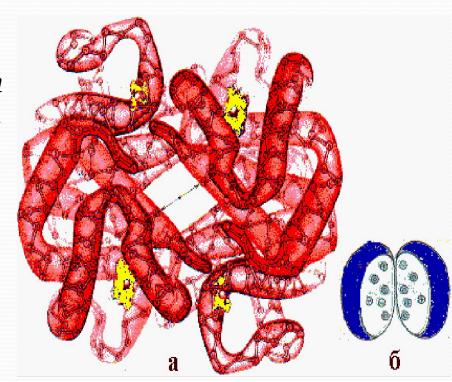
Денатурация.

Перемена температуры, ионной силы, рН, и еще обработка органическими либо какими-либо дестабилизирующими агентами имеет возможность привести к денатурации. Данные перемены не затрагивают первичную текстуру, при всем при этом биологическая активность белка утрачивается.

Ренативация При явных условиях

денатурированный белок быть может ренативирован. Данное случается при удалении денатурирующего либо дестабилизирующего фактора. К примеру, при удалении мочевины диализом полипептиды самопроизвольно возобновляют собственную конформацию. Это же случается при медленном замораживании денатурированного нагреванием белка. Это одобряет, что нрав укладки пептидной цепи предопределен первичной текстурой.

Четвертичная текстура и кооперативность


В белках различают первичную, вторичную, третичную и четвертичную текстуры:

Четвертичная структура

Третичная структура

Четвертичная текстура характерна для белков, возведенных из 2 либо наиболее пептидных цепей. Белки этого вида именуются олигомерами. Четвертичная текстура - именно это численность, и прием укладки полипептидных цепей (протомеров) в месте. Четвертичная текстура гемоглобина: а - модель молекулы гемоглобина, любой протомер имеет гем (изображен в форме диска); б - схема комплементарности контактных плоскостей протомеров.

