Asymptotic Analysis

Algorithms and Data structures course

Analysis of Algorithms

- Analysis of Algorithms is the determination of the amount of time, storage and/or other resources necessary to execute them.
- Analyzing algorithms is called **Asymptotic Analysis**.
- Asymptotic Analysis evaluate the performance of an algorithm.

Time complexity

- **Time complexity** of an algorithm quantifies the amount of **time** taken by an algorithm.
- We can have three cases to analyze an algorithm:
 - Worst Case.
 - Average Case.
 - Best Case.

Time complexity

• Assume the below algorithm using C++ code:

```
int search(const std::vector<int>& arr, int x)
{
    for (int i = 0; i < arr.size(); ++i)
    {
        if (arr[i] == x)
        {
            return i + 1;
        }
    }
    return -1;
}</pre>
```

• In the worst case analysis, we calculate upper bound on running time of an algorithm.

```
int search(const std::vector<int>& arr, int x)
{
    for (int i = 0; i < arr.size(); ++i)
    {
        if (arr[i] == x)
        {
            return i + 1;
        }
     }
    return -1;
}</pre>
```

- The case that causes maximum number of operations to be executed.
- For Linear Search, the worst case happens when the element to be searched is not present in array (example: search for number 8).

2 3 5	4	1	7	6
-------	---	---	---	---

• When x is not present, the search() functions compares it with the elements of **arr** one by one.

```
int search(const std::vector<int>& arr, int x)
{
    for (int i = 0; i < arr.size(); ++i)
    {
        if (arr[i] == x)
        {
            return i + 1;
        }
    }
    return -1;
}</pre>
```

• Time complexity of linear search would be O(n).

```
int search(const std::vector<int>& arr, int x)
{
    for (int i = 0; i < arr.size(); ++i)
    {
        if (arr[i] == x)
        {
            return i + 1;
        }
    }
    return -1;
}</pre>
```

Time complexity Average Case Analysis

• We take all possible inputs and calculate computing time for all of the inputs.

```
int search(const std::vector<int>& arr, int x)
{
    for (int i = 0; i < arr.size(); ++i)
    {
        if (arr[i] == x)
        {
            return i + 1;
        }
    }
    return -1;
}</pre>
```

• Calculate lower bound on running time of an algorithm.

```
int search(const std::vector<int>& arr, int x)
{
    for (int i = 0; i < arr.size(); ++i)
    {
        if (arr[i] == x)
        {
            return i + 1;
        }
    }
    return -1;
}</pre>
```

• Time complexity in the best case of linear search would be O(1).

```
int search(const std::vector<int>& arr, int x)
{
    for (int i = 0; i < arr.size(); ++i)
    {
        if (arr[i] == x)
        {
            return i + 1;
        }
    }
    return -1;
}</pre>
```

- The case that causes minimum number of operations to be executed.
- For Linear Search, the best case occurs when x is present at the first location. (example: search for number 2).
- So time complexity in the best case would be $\boldsymbol{\Omega}(1)$

|--|

Time complexity

- Most of the times, we do **worst case** analysis to analyze algorithms.
- The **average case** analysis is not easy to do in most of the practical cases and it is rarely done.
- The **best case** analysis is bogus. Guaranteeing a lower bound on an algorithm doesn't provide any information.

Asymptotic Notations

- **Big-O Notation:** is an Asymptotic Notation for the upper bound.
- Ω Notation (omega notation): is an Asymptotic Notation for the lower bound.

Big-O Notation O(1)

- Time complexity of a function (or set of statements) is considered as O(1) if it doesn't contain loop, recursion and call to any other non-constant time function. For example **swap()** function has O(1) time complexity.
- A loop or recursion that runs a constant number of times is also considered as O(1).
 For example the following loop is O(1).
 int town - at

```
int c = 4;
for (int i = 0; i < c; ++i)
{
    std::cout << i;
}</pre>
```

```
). void swap(int& a, int& b)
{
    int temp = a;
    a = b;
    b = temp;
}
```

Big-O Notation O(n)

- Time Complexity of a loop is considered as O(n) if the loop variables is incremented / decremented by a constant amount.
- For example the following loop statements have O(n) time complexity.

Big-O Notation $O(n^c)$

- Time complexity of nested loops is equal to the number of times the innermost statement is executed.
- For example the following loop statements have $O(n^2)$ time complexity.

```
for (int i = 0; i < n; ++i)
{
    for (int j = 0; j < n; ++j)
    {
        std::cout << i << j << std::endl;
    }
}</pre>
```

Big-O Notation O(log(n))

• Time complexity of a loop is considered as O(log(n)) if the loop variables are divided / multiplied by a constant amount.

```
int sum = 0;
while (n != 0)
{
    sum += n % 10;
    n /= 10;
}
```

• How to combine time complexities of consecutive loops?

• Time complexity of above code is O(n) + O(m) which can also be written as O(n+m) or O(max(n, m)).

Big-O Notation. Growth Orders

n	O(1)	O(log(n))	O(n)		O(N ²)	O(2 ⁿ)	O(n!)
1	1	0	1	1	1	2	1
12	1	4	12	48	144	4096	4x10 ⁸
27	1	5	27	135	729	1.3x10 ⁸	10 ²⁸
500	1	9	500	4500	2.5x10 ⁵	3x10 ¹⁵⁰	10 ¹¹³⁴
1000	1	10	1000	10x10 ³	10 ⁶	10 ³⁰¹	$4x10^{2567}$
16x10 ³	1	14	16x10 ³	2.2x10 ⁵	2.6x10 ⁸	-	-
10 ⁵	1	17	10 ⁵	1.7x10 ⁶	10 ¹⁰	-	-

Big-O Notation. Growth Orders

Algorithms and Data structures course

Big-O Notation. Growth Orders

• What is this code complexity?

```
for(int i = 0; i < n; ++i)
    for (int j = 0; j < n * n; ++j)
        for (int k = 0; k < j; ++k)
        {
            std::cout << i << ' ';
            std::cout << j << ' ';
            std::cout << k << '\n';
        }
}</pre>
```

• What is this code complexity?

```
for(int i = 0; i < n; ++i)
for (int j = 0; j < n * n; ++j)
for (int k = 0; k < j; ++k)
{
    std::cout << i << ' ';
    std::cout << j << ' ';
    std::cout << k << '\n';
}</pre>
```

• Time complexity of above code is $O(n^5)$.

• What is this code complexity?

• What is this code complexity?

• Time complexity of above code is $O(n \cdot \sqrt{n})$.