Asymptotic Analysis

Analysis of Algorithms

* Analysis of Algorithms is the determination of the amount of time, storage
and/or other resources necessary to execute them.

* Analyzing algorithms is called Asymptotic Analysis.

* Asymptotic Analysis evaluate the performance of an algorithm.

Time complexity

* Time complexity of an algorithm quantifies the amount of time taken by an
algorithm.

* We can have three cases to analyze an algorithm:
* Worst Case.
* Average Case.
* Best Case.

Time complexity

* Assume the below algorithm using C++ code:

int search(const std::vector<int>& arr, int x)

1
for (int 1 = 0; 1 < arr.size(); ++1i)
{
i (afrii] == %)
{
return 1 + 1;
}
}
return -1;
§

Algorithms and Data structures course

Time complexity
Worst Case Analysis

* In the worst case analysis, we calculate upper bound on running time of an
algorithm.

int search(const std::vector<int>& arr, int x)

{
for (int 1 = 0; 1 < arr.size(); ++1i)
{
i (afrii] == %)
{
return 1 + 1;
}
}
return -1;
¥

Algorithms and Data structures course

Time complexity
Worst Case Analysis

* The case that causes maximum number of operations to be executed.

* For Linear Search, the worst case happens when the element to be searched 1s not
present in array (example: search for number 8).

Time complexity
Worst Case Analysis

* When x 1s not present, the search() functions compares i1t with the elements of arr
one by one.

int search(const std::vector<int>& arr, int x)

{
for (int 1 = ©0; 1 < arr.size(); ++1)
{
if (afrfi] == %)
{
return 1 + 1;
}
}
return -1;
¥

Algorithms and Data structures course

Time complexity
Worst Case Analysis

* Time complexity of linear search would be O(n).

int search(const std::vector<int>& arr, int x)

1

for (int 1 = ©0; 1 < arr.size(); ++1)
{

if (afrfi] == %)

{

return 1 + 1;

}

}

return -1;

Algorithms and Data structures course

Time complexity
Average Case Analysis

* We take all possible inputs and calculate computing time for all of the inputs.

int search(const std::vector<int>& arr, int x)

1
for (int 1 = ©0; 1 < arr.size(); ++1)
{
if (afrfi] == %)
{
return 1 + 1;
}

}

return -1;

Algorithms and Data structures course

Time complexity
Best Case Analysis

* Calculate lower bound on running time of an algorithm.

int search(const std::vector<int>& arr, int x)

1

for (int 1 = ©0; 1 < arr.size(); ++1)
{

if (afrfi] == %)

{

return 1 + 1;

}

}

return -1;

Algorithms and Data structures course

Time complexity
Best Case Analysis

* Time complexity in the best case of linear search would be O(1).

int search(const std::vector<int>& arr, int x)

1

for (int 1 = ©0; 1 < arr.size(); ++1)
{

if (afrfi] == %)

{

return 1 + 1;

}

}

return -1;

Algorithms and Data structures course

Time complexity
Best Case Analysis

« The case that causes mmimum number of operations to be executed.

* For Linear Search, the best case occurs when x is present at the first location.
(example: search for number 2).

* So time complexity m the best case would be 2(1)

2 |3 |54 ,1 |76

Algorithms and Data structures course

Time complexity

* Most of the times, we do worst case analysis to analyze algorithms.

* The average case analysis 1s not easy to do in most of the practical cases and it 1s
rarely done.

* The best case analysis 1s bogus. Guaranteeing a lower bound on an algorithm
doesn’t provide any information.

Asymptotic Notations

* Big-O Notation: 1s an Asymptotic Notation for the upper bound.
* 3 Notation (omega notation): 1s an Asymptotic Notation for the lower bound.

* ® Notation (theta notation): 1s an Asymptotic Notation for both the lower and the
upper bounds.

B1g-O Notation
O(1)

* Time complexity of a function (or set of statements) 1s considered as O(1) 1f it
doesn’t contain loop, recursion and call to any other non-constant time function.
For example swap() function has O(1) time complexity.

* A loop or recursion that runs a constant
number of times 1s also considered as O(1).
For example the following loop 1s O(1).

void swap(int& a, int& b)

int temp = a;

int ¢ = 4; a = b;

fir- (1nt 1 ='9; A € €} +$1) b = temp;

{ J
stdi:cout << 1; }

}

B1g-O Notation
O(n)

* Time Complexity of a loop 1s considered as O(n) if the loop variables 1s
incremented / decremented by a constant amount.

* For example the following loop statements have O(n) time complexity.

for (int 1 = 0; 1 < n; ++1)

{

std:icout << 1;

B1g-O Notation
O(n*)

* Time complexity of nested loops 1s equal to the number of times the innermost
statement 1s executed.

* For example the following loop statements have O(n”) time complexity.

for (int 1 = 0; i € n; ++i)

{
for (int j = 0; j < n; ++3j)
{
std::cout <€ 1 £<] <€ std::endl;
}

Algorithms and Data structures course

B1g-O Notation
O(log(n))

* Time complexity of a loop is considered as O(log(n)) if the loop variables are
divided / multiplied by a constant amount.

int sum = 0;

while (n != 0)

{
sum += n % 10;
h = 18:

Algorithms and Data structures course

B1g-O Notation

* How to combine time complexities of consecutive loops?

for (int 1 = @93 i € n; ++i)
stdsicout << 13

for (int 1 = 0; 1 < m; ++1i)
stdsicout << 13

* Time complexity of above code 1s O(n) + O(m) which can also be written as
O(n+m) or O(max(n, m)).

Algorithms and Data structures course

Bi1g-O Notation. Growth Orders

n O(1) | O(log(n)) | O(n) O(N?) O(2") O(n!)
1 1 0 1 1 1 2 1
12 1 4 12 48 144 4096 | 4x10°
27 1 5 27 135 729 |1.3x10%| 10%
500 1 9 500 4500 2.5x10° | 3x10*°| 1013
1000 1 10 1000 10x10° 10° 10°% | 4x10%°%
16x10° | 1 14 16x10° | 2.2x10°> | 2.6x10° - -
10° 1 17 10° 1.7x10° 10%° - -

Big-O Notation. Growth Orders

o(n" on?)/ o)

O(Vn)

A

Time

O(log n)

Data Input (Space)

Algorithms and Data structures course

Bi1g-O Notation. Growth Orders

Algorithms and Data structures course

Bi1g-O Notation

* What 1s this code complexity?

for(int 1 = 0; 1 < n; ++i)
for (int jJ =0; j < n * n; ++3)
for (int k = 9; k < j; ++k)
{
std::cout << 1 << " ';
stidyzcout ¢ J €€ 7 Y
std:scout €€ k €€ “Xh";
}

Algorithms and Data structures course

B1g-O Notation

« What 1s this code complexity?

for(int 1 = 0; 1 < n; ++i)
for (int jJ =0; j < n * n; ++3)
for (int k = 9; k < j; ++k)
{

std::cout << 1 << " ';

stdiscout ¢ J :
std:zcout ¢¢ k €€ *\n’;

}

» Time complexity of above code is O(n>).

Algorithms and Data structures course

Bi1g-O Notation

* What 1s this code complexity?

for (int 1 = 0; 1 < n; ++1)
for (int j =0; J * j <= n; ++J)
stdzscout €€ 1 # J ¢ ° "3

J

Algorithms and Data structures course

B1g-O Notation

« What 1s this code complexity?

for (int 1 = 0; 1 < n; ++1)
for-(int J = @; 7 *¥ § <= N3 ++j)
stdzscout €€ 1 # J ¢ ° "3

J

« Time complexity of above code is O(n - /n).

Algorithms and Data structures course

