
Asymptotic Analysis

Algorithms and Data structures course

Analysis of Algorithms

• Analysis of Algorithms is the determination of the amount of time, storage
and/or other resources necessary to execute them.

• Analyzing algorithms is called Asymptotic Analysis.

• Asymptotic Analysis evaluate the performance of an algorithm.

Algorithms and Data structures course

Time complexity

• Time complexity of an algorithm quantifies the amount of time taken by an
algorithm.

• We can have three cases to analyze an algorithm:
• Worst Case.
• Average Case.
• Best Case.

Algorithms and Data structures course

Time complexity

• Assume the below algorithm using C++ code:

Algorithms and Data structures course

Time complexity
Worst Case Analysis
• In the worst case analysis, we calculate upper bound on running time of an

algorithm.

Algorithms and Data structures course

Time complexity
Worst Case Analysis
• The case that causes maximum number of operations to be executed.

• For Linear Search, the worst case happens when the element to be searched is not
present in array (example: search for number 8)․

Algorithms and Data structures course

2 3 5 4 1 7 6

Time complexity
Worst Case Analysis
• When x is not present, the search() functions compares it with the elements of arr

one by one.

Algorithms and Data structures course

Time complexity
Worst Case Analysis
• Time complexity of linear search would be O(n).

Algorithms and Data structures course

Time complexity
Average Case Analysis
• We take all possible inputs and calculate computing time for all of the inputs.

Algorithms and Data structures course

Time complexity
Best Case Analysis
• Calculate lower bound on running time of an algorithm.

Algorithms and Data structures course

Time complexity
Best Case Analysis
• Time complexity in the best case of linear search would be O(1).

Algorithms and Data structures course

Time complexity
Best Case Analysis
•

Algorithms and Data structures course

2 3 5 4 1 7 6

Time complexity

• Most of the times, we do worst case analysis to analyze algorithms.

• The average case analysis is not easy to do in most of the practical cases and it is
rarely done.

• The best case analysis is bogus. Guaranteeing a lower bound on an algorithm
doesn’t provide any information.

Algorithms and Data structures course

Asymptotic Notations

• Big-O Notation: is an Asymptotic Notation for the upper bound.

• Ω Notation (omega notation): is an Asymptotic Notation for the lower bound.

• Θ Notation (theta notation): is an Asymptotic Notation for both the lower and the
upper bounds.

Algorithms and Data structures course

Big-O Notation
O(1)
• Time complexity of a function (or set of statements) is considered as O(1) if it

doesn’t contain loop, recursion and call to any other non-constant time function.
For example swap() function has O(1) time complexity.

• A loop or recursion that runs a constant
number of times is also considered as O(1).
For example the following loop is O(1).

Algorithms and Data structures course

Big-O Notation
O(n)
• Time Complexity of a loop is considered as O(n) if the loop variables is

incremented / decremented by a constant amount.
• For example the following loop statements have O(n) time complexity.

Algorithms and Data structures course

• Time complexity of nested loops is equal to the number of times the innermost
statement is executed.

• For example the following loop statements have O(n2) time complexity.

Algorithms and Data structures course

• Time complexity of a loop is considered as O(log(n)) if the loop variables are
divided / multiplied by a constant amount.

Algorithms and Data structures course

Big-O Notation

• How to combine time complexities of consecutive loops?

• Time complexity of above code is O(n) + O(m) which can also be written as
O(n+m) or O(max(n, m)).

Algorithms and Data structures course

Big-O Notation. Growth Orders

Algorithms and Data structures course

n O(1) O(log(n)) O(n) O(N2) O(2n) O(n!)

1 1 0 1 1 1 2 1

12 1 4 12 48 144 4096 4x108

27 1 5 27 135 729 1.3x108 1028

500 1 9 500 4500 2.5x105 3x10150 101134

1000 1 10 1000 10x103 106 10301 4x102567

16x103 1 14 16x103 2.2x105 2.6x108 - -

105 1 17 105 1.7x106 1010 - -

Big-O Notation. Growth Orders

Algorithms and Data structures course

Big-O Notation. Growth Orders

Algorithms and Data structures course

Big-O Notation

• What is this code complexity?

Algorithms and Data structures course

Big-O Notation

•

Algorithms and Data structures course

Big-O Notation

• What is this code complexity?

Algorithms and Data structures course

Big-O Notation

•

Algorithms and Data structures course

