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Conditional statements.

Phrases such as if... then..., and ... if and only if ... are frequently used to
connect simple statements that can be described as either true or false. For
the sake of typographical convenience, there are conventional logical symbols
for representing such phrases.

Suppose P and @ are two different statements. The compound statements

if P then @

and

P 1mmplies Q)

mean that if P is true then @ is true. This is written symbolically as
P = 0. (1.1)
We say that

P 1s a sufficient condition for @)

or

() 1s a necessary condition for P.

In the above context, P stands for the hypothesis or assumption, and @ is the
conclusion.



Let’s train the brain!

Compound statement:

If student pass exams then he will receive the scholarships.

Formulate by yourselves:

.... Is sufficient condition for ....

.... Is necessary condition for ....

.. implies ....



Theorem. Inverse and converse
theorem.

Theorem. IfPthen Q. FP=
Converse Theorem. IfQ thenP. 0=~

Inverse Theorem. If P thennot Q. P=¢

Example 2.1

Theorem. If student pass exams then he will receive the scholarships.

Converse Theorem. If student receive the scholarships then he will pass exams.

Inverse Theorem. If student pass exams then he will not receive the scholarships.



Let’s train the brain!

1) Theorem. If it rains then the ground is wet. Formulate
a) converse theorem
b) inverse theorem
c) converse of inverse theorem
d) inverse of converse theorem

2) Theorem. If a=0 or b=0 then ab=0.
Formulate

a) converse theorem

b) inverse theorem

c) converse of inverse theorem

d) inverse of converse theorem

2) Theorem. If two sides of a triangle are equal, then it is isosceles
Formulate a) converse theorem Db)inverse theorem  c) converse of
inverse theorem  d) inverse of converse theorem



Types of proofs.

Theorem. IfPthen Q. FP=¢

1. Assume that P is true and prove that @) is true (direct proof).

Assume that (@) is false and prove that P is false (contrapositive proof).

3. Assume that P is true and () is false, and then prove that this leads to a
contradiction (proof by contradiction).

v b

Theorem. If a=0 or b=0 then ab=0.
Theorem. If a=0 or b=0 then ab=0.

Direct proof. Let a=0 or b=0 then its’ product ab will be equal 0 by
rules of multiplication.

Contrapositive proof. Assume thatas = 0. Then by rules of
multiplication both « = 0 and& = 0. It is true, because that source theorem
is true.

Proof by contradiction. Assume that a=0 or b=0 and «» = 0. But if a=0
or b=0 then «& =0 by rules of multiplication. Our first assumption leads
to contradiction. Because that source theorem is true.



Mathematical induction

The main idea of MI is — let we have some statement connected with
natural numbers (sometimes with integers).
Examples:

1) for any natural » the formula Z”'. i kD
K=l

1S true

2) for any natural » number 2° +1 is divisible by 3%°!

1 1
3)1+— > gn,n22 )
R
4) 7,7, . F . F+ G =F. F,. . F_+ F —G-deduction theorem (in

axiomatic system of mathematical logic)
5) For lists xs of any length map f (take k xs) = take k (map fxs) —
functions of Haskell (programming language)



A proof by induction consists of three steps.

The first, the base step (BS) (or basis), proves the statement forn =
0 or for n=1.

The second step is the assumption of induction (AS). We assume
that the statement holds for any given »=% or» <k.

And third step is the induction step (IS), it proves that if the
statement holds for any given case n =k, then it must also hold for the
nextcasen=k + 1.

These steps establish that the statement holds for every natural
number n. So if statement holds for some initial number », by BS). then it

holds for », +1(by AS and IS). If it holds forx, +1, then it holds for
n, +1+1=#, + 2and so on.



Example 2.4 Prove that any sum equal or greater than 8 cents may
be collected using coins of 3 and 5 cents

BS. Can we collect sum = 8 cents?
AS. Assume that we can collect sum of n cents.

IS. So we have a sum of n cents. Can you offer the way how we can get n+1
cents? Which coins we need to remove and which coins we need to add?



2.1 Sequences of real numbers

We deal with the fundamental properties of sequences and series of
real numbers. We place particular emphasis on the concept of
“convergence,” a thorough understanding of which is important for the
study of the various branches of mathematical physics that we are
concerned with subsequent chapters.

At first let’s imagine we have a natural sequence:

12,3,...,n...x,...(1)
where numbers stand in increasing order, so that a larger number
»'follows after smaller number » (or a smaller number precedes a larger
one).

Now let’s change every number in sequence (1) by some real
number x, using some rule. Then we have got a real sequence:

e I s v s i D)
Briefly, we shall write real sequence (or simply - sequence) as
(x,).
Note! Notation (*,) and {%,} are not equal! If x, =1 for any » e ¥then

(x, ) means infinite sequence 1,1,1,1..... whereas {X,}means a set
consisted of single number 1.



Examples of sequences

1) Arithmetic progression

a, a+d, a+2d, ..., a+(n-1)d, ...
1 2 3 n

2) Geometric progression

clz, ag, aaq'z, - ag"-l,
3) Approximation to r

(z,) = (3.1, 3.14, 3.142, --- , z,, ---),






We start with a precise definition of the convergence of a real sequence,
which is an initial and crucial step for various branches of mathematics.

& Convergence of a real sequence:

A real sequence (z,) is said to be convergent if there exists a real
number z with the following property: For every £ > 0. there is an integer
N such that

n>N = |zn—2z|<e. (2.1)



We must emphasize that the magnitude of ¢ is arbitrary. No matter how
small an £ we choose, it must always be possible to find a number N that will
increase as ¢ decreases.

Remark. In the language of neighborhoods, the above definition is stated as
follows: The sequence (z,) converges to x if every neighborhood of x contains
all but a finite number of elements of the sequence.

When (z,) is convergent, the number 2 specified in this definition is called
a limit of the sequence (z,), and we say that z, converges to z. This is
expressed symbolically by writing
lim z, ==z,
n—oo
or simply by
T, — .

If (z,,) is not convergent, it is called divergent.

Remark. The limit 2 may or may not belong to (z,,); this situation is similar
to the case of the limit point of a set of real numbers discussed in Sect. 1.1.5.



Example 2.1. Let sequence is defined be x, = 1 Is that sequence is

2
convergent?
Solution. Sequence consist of numbers

With increasing the index the elements are closer to zero. Suppose that 0
is the limit of this sequence. To prove this fact we must find integer
index N for every & 0such that

1

B2
»

<€

< £

b
n is natural number and we can rewrite absolute expression as

1
—<£

Then we can multiply both part by n and divide by «:

1<xne

— <R
c

n>—
&

So, inequality (2.1) will be satisfied when n is greater than 1/ ¢

£ 5/0.1/0.08/0.0016

N(e)| 111 |13 [?




