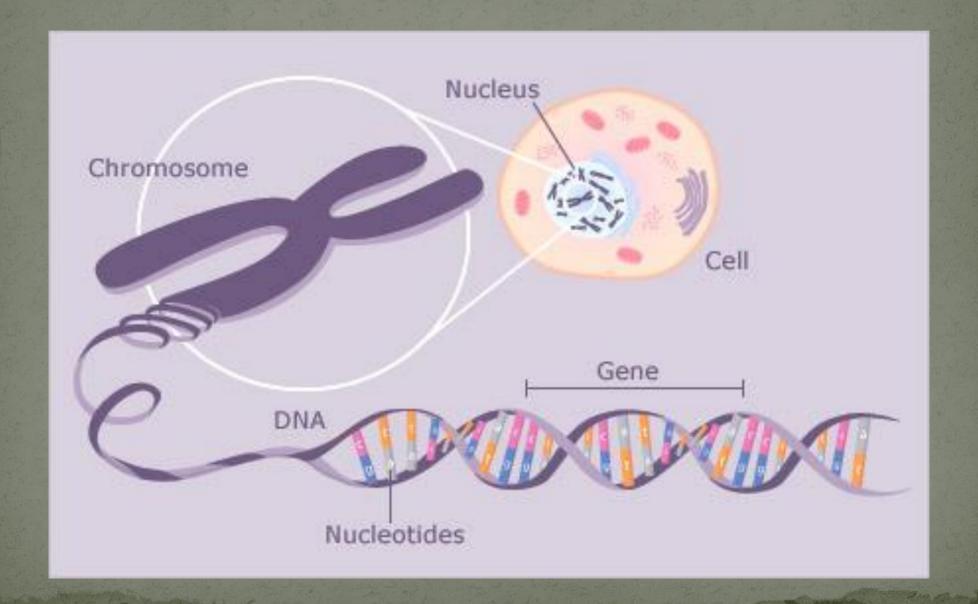
Департамент здравоохранения по Кемеровской области «Кемеровский областной медицинский колледж»

Основы генетики



Выполнила студент группы ФШ - **161** по специальности **31.02.01** «Лечебное дело» Мурсунманкулова Шохсанам

Содержание

*	Введение	3
	Основные понятия	
*	Периоды в генетике	6 — 7
*	Законы генетики	8 — 10
*	Генетика человека	11

Введение

Основные понятия

- Наследственность способной передавать накопленные признаки в ряду поколений.
- п Изменчивость способность к появлению и проявлению новых признаков, отсутствующих у родительских особей. Различают наследственную и ненаследственную изменчивость.
 - Ненаследственная или модификационная изменчивость не затрагивает наследственного материала организма, носит групповой характер, происходит в пределах нормы реакции.
- Наследственная изменчивость (мутационная или генотипическая) связана с изменением генотипа особи, поэтому возникающие изменения наследуются. Она является материалом для естественного отбора.

Основные понятия

Генотип — совокупность всех генов, локализованных в хромосомах данного организма.

Геном — совокупность генов, локализованных в гаплоидном наборе хромосом Фенотип — совокупность признаков, проявляющихся в результате взаимодействия генотипа с условиями внешней и внутренней среды.

Хромосома — носитель наследственной информации на клеточном уровне **Мутация** — внезапно возникающие естественные (спонтанные) или вызываемые искусственно (индуцированные) стойкие изменения наследственной структуры. Способность мутировать — универсальное свойство всех живых организмов **Генные мутации** — измененная последовательность азотистых оснований (аденин,

Тимин, гуанин, цитозин) в рамках одного гена. Генные мутации — наиболее часто встречающиеся, они редко имеют для организма летальные последствия и проявляются в основном в небольшом изменении проявления признака.

Периоды генетики**.** Менделевский период

Изучая форму семян у растений, полученных в результате скрещиваний, он ради уяснения закономерностей передачи лишь одного признака («гладкие — морщинистые») подверг анализу 7324 горошины. Каждое семя он рассматривал в лупу, сравнивая их форму и делая записи.

Мендель так сформулировал цель этой серии опытов: «Задачей опыта и было наблюдать эти изменения для каждой пары различающихся признаков и установить закон, по которому они переходят в следующих друг за другом поколениях. Поэтому опыт распадается на ряд отдельных экспериментов по числу наблюдаемых у опытных растений константно-различающихся признаков».

Генетика стала наукой с открытием после открытия Грегором Менделем в **1865-**ом году законов расщепления признаков при скрещивании.

Периоды генетики. Хромосомная теория

Так как Мендель не был профессиональным ученым, его открытия остались без внимания и были переоткрыты Х.де Фризом, Э.Чермаком только в **1900**-ом году. С этого времени началось бурное развитие генетики, а главное внимание было сосредоточено на исследовании закономерностей наследования потомками признаков

Основным методом являлся метод гибридологического анализа. Он состоит в точной статистической характеристике распределения признаков в популяции потомков, полученных при скрещивании специально подобранных особей.

родительских особей.

Усовершенствованные методы позволили изучить мейоз, митоз и процесс оплодотворения и на основе этого сформулировать хромосомную теорию наследственности (хромосомы — носители наследственной информации на клеточном уровне) и теорию гена как материальной основы наследственности. Основателями хромосомной теории являются Т.Х.Морган (1911 г.).

Основные

Законы Менделя

Закон доминирования (закон единообразия гибридов первого поколения):

При скрещивании особей, отличающихся по аналогичным признакам, в первом поколении проявляется лишь один из них — доминантный, рецессивный ген проявляется в следующих поколениях.

Закон расщепления-

При скрещивании между собой гибридов первого поколения в потомстве в определенных численных соотношениях проявляются и доминантные и рецессивные признаки.

Основные законы

Законы Моргана

п Основные положения хромосомной теории

- Хромосомы находятся в ядре клетки и являются носителями генов.
- Хромосомы являются носителями наследственной информации, то есть преемственность свойств в ряду поколений обеспечивается преемственностью их хромосом.

п Закон сцепленного наследования

Гены, расположенные в одной хромосоме образуют одну группу сцепления. Закон независимого наследования справедлив лишь в том случае, если гены рассматриваемых пар признаков лежат в различных парах гомологичных хромосом. Гомологичные хромосомы сходны по форме, размерам и группам сцепления генов.

Законы генетики

Закон гомологических рядов в наследственной изменчивости (селекция)

Этот закон был открыт Н.И.Вавиловым, который обратил внимание на параллелизм в изменчивости близких видов и родов животных и растений. Если все известные у наиболее изученного в данной группе вида вариации расположить в определенном порядке в виде таблицы, то можно обнаружить и у других видов те же вариации изменчивости.

Генетическое обоснование этого закона заключается в следующем. Близкие виды обладают сходным генотипом, и следовательно сходной потенциальной изменчивостью (сходные мутации одинаковых генов). По мере эволюционного удаления различия в генотипах становятся все больше, и параллелизм становится все менее полным.

Генетика человека

Методы исследования генетики человека

- **1)** Генеалогический метод анализ распределения признаков в родословных. Позволяет определить тип наследования, частоту и интенсивность проявления признака. Результатом анализа служит показатель эмпирического риска вероятность аномалии в зависимости от близости к носителю.
- 2) Близнецовый метод. При исследовании однояйцевых близнецов с одинаковым генотипом можно определить степень влияния среды на экспрессию генов. Важнейший показатель конкордантность вероятность обладания признаком одним близнецом, если он присутствует у второго.
- **3) Изоляционный метод** изучение распределения генов в изолированных социальных группах.

Спасибо за внимание