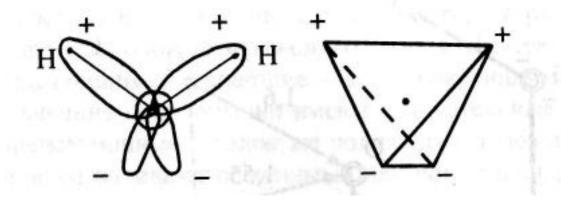

Кварцевые пески

- •морские
- •дельтовые
- •лагунно-континентальные
- •озерные
- •аллювиальные
- •ледниковые
- •элювиальные
- •эоловые

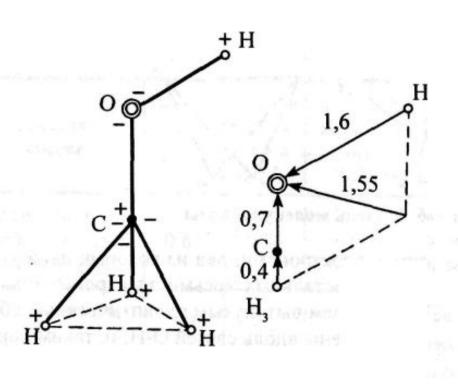
$$2SiO_2 + 4H_2O \leftrightarrow SiO_4^{4-} + Si(OH)_4 + 2H_2$$

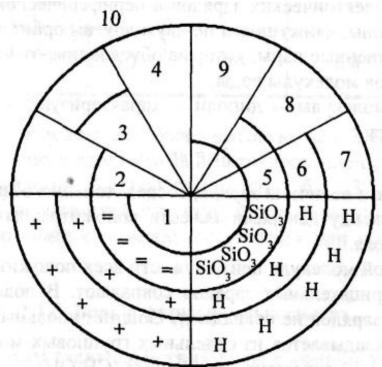
Превращения кремнезема	Температура превращения в °C	Изменение объема В %
β -кварц $ ightarrow lpha$ -кварц	573	+0,82
γ -тридимит $ ightarrow$ eta -тридимиг	117	+0,20
β -кристобалит $ ightarrow \alpha$ -кристобалит	250	+3,70
β -тридимит $ ightarrow lpha$ -тридимит	263	+0,20
α -кварц $ ightarrow lpha$ -тридимит	870	+16.0
α -тридимит $ ightarrow$ α -кристобалит	1470	+15,4
α -кристобалит \rightarrow кремнеземнистое стекло	1713	+15,5
Кремнеземнистое стекло → кристобалит		0,90

 α -кварц \to 573 °C \to β -кварц \to 870 С \to β -тридимит \to 1470 °C \to β -кристаболит 1713 °C \to расплав.


2,4; 15,1; 4,7; 0,1%

Минерал	Химическа я формула	Твердос ть по шкале Мооса	Плот ность, $\Gamma/\text{см}^3$	Примечание
Гематит	Fe ₂ O ₃	5,5-6,5	5,0—5,	Температура плавления
(красный			3	1560°C
железняк)				
Магнетит	FeO·Fe ₂ O	5,5—6,6	4,9—5,	Температура плавления
(магнитный	_		2	1540°C
железняк)				
Ильменит	FeO·TiO ₂	5—6	4,72	Перед паяльной трубкой
				не плавится
Гетит	FeO·OH	4,5—5,5	4,0—4,	Перед паяльной трубкой
Лимонит	2Fe ₂ O ₃ ·3H ₂	1—4	4	не плавятся; начало
	O		3,3—4,	выделения воды — при
			0	250 °C
Пирит	FeS ₂	6—6,5	4,9-5,2	Разлагается при 575 °C


Минерал	Химическая формула	Твердость по шкале Мооса	Плотность, г/см ³	Температура диссоциации, °С
Кальцит (известковый шпат)	CaCO ₃	3	2,6—2,8	885
Магнезит Доломит	MgCO ₃ CaCO ₃ ·MgCO ₃	4—4,5 3,5—4,0	2.9—3,1 1,8—2,9	525 700—750 900—950
Сидерит	FeCO ₃	3,5—4,5	3,7-3,9	500—600


Диаметр зерен,		Форма песка	
MM	округлая	полуокруглая	остроугольная
0,01—0,05	0	9	91
0,05-0,1	6	26	68
0,1—0,25	18	36	46
0,25—0,5	26	37	37
0,5—1,0	30	38	32
1,0-2,0	14	45	41

минерал	твердость	минерал	твердость	минерал	твердость
Тальк	1	Флюорит	4	кварц	7
Гипс	2	Апатит	5	корунд	9
Кальцит	3	ортоклаз	6	алмаз	10

$$M = e \cdot r$$
,

Диаметр	Форма песка		
зерен, мм	округлая	Остроугольная	
0,15	38,4	47,7	
0,1	39,0	50,8	
0,075	40,3	51,3	

Пример 1: обозначение марок кварцевых формовочных песков: $2K_1O_302$ - марка кварцевого формовочного песка с массовой долей глинистой составляющей от 0,2 до 0,5%, массовой долей диоксида кремния не менее 99.0%, коэффициента однородности от 60,0 до 70,0% и средним размером зерна от 0,19 до 0,23 мм.

Пример 2: $2T_2O_4$ 02 - тощий формовочный песок с массовой долей глинистой составляющей не более 8%, массовой долей диоксида кремния не менее 93,0%, коэффициента однородности от 50,0 до 60,0% и средним размером зерна от 0,19 до 0,23 мм.

Пример 3: \mathbb{H}_2 016 - жирный формовочный песок с пределом прочности при сжатии во влажном состоянии от 0.05 МПа до 0,08 МПа и средним размером зерна от 0,14 до 0,18 мм.

Массовая доля глинистой составляющей в кварцевых песках

Группа	Массовая доля глинистой составляющей, %, не более
1	0,2
2	0,5
3	1,0
4	1,5
5	2,0

Массовая доля SiO₂ в кварцевых песках

Группа	Массовая доля диоксида кремния, %, не менее
K_1	99,0
K_2	98,0
К3	97,0
K_4	95,0
K ₅	93,0

Коэффициент однородности формовочных песков

Группа	Коэффициент однород- ности, %
O_1	Св. 80,0
O_2	От 70,0 до 80,0
O_3	>> 60,0 >> 70,0
O_4	>> 50,0 >> 60,0
O_5	До 50,0

Средний размер зерен формовочных песков

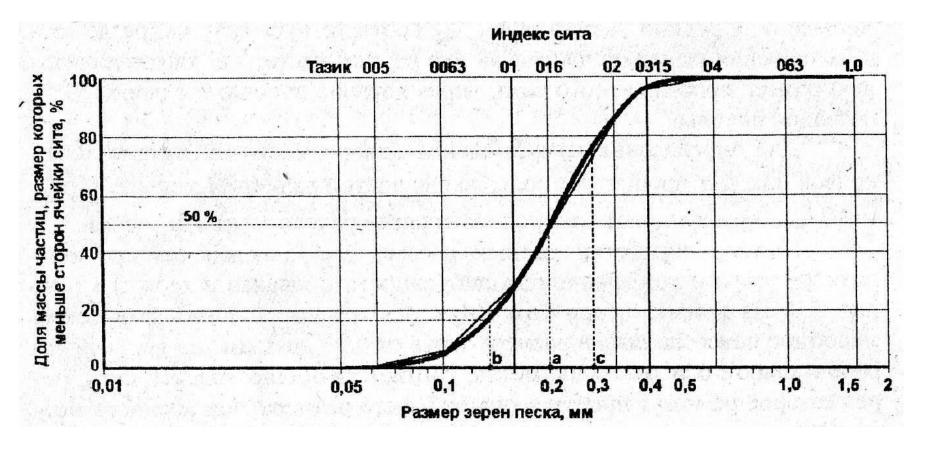
Группа	Средний размер зерна, мм
O1	До 0,14
O16	От 0,14 до 0,18
O2	>> 0,19 >> 0,23
O25	>> 0,24 >> 0,28
О3	Св. 0,28

Массовая доля глинистой составляющей тощих песков

Группа	Массовая доля глинистой составляющей, %, не более
1	4,0
2	8,0
3	12,0

Массовая доля SiO₂ тощих песков

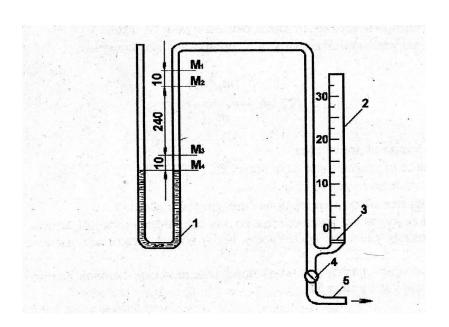
Группа	Массовая доля диоксида кремния, %, не менее
T_1	96,0
T_2	93,0
T ₃	90,0


Предел прочности при сжатии во влажном состоянии

Группа	Предел прочности при сжатии во влажном состоянии, МПа
Ж ₁	Св. 0,08
Ж2	От 0,05 до 0,08
Ж ₃	До 0,05

номер сита	25	16	10	063	04	0315	02	016	01	0063	005
размер стороны ячейки сита, мм	2,5	1,6	1,0	0,63	0,4	0,315	0,2	0,16	0,1	0,063	0,05

$$X_i = \frac{m_i \cdot 100}{m}$$


	Размер	Характерны	Остаток	на сите	
Индекс сита		й размер фракции 6, мм	Γ	%	Доля массы частиц, размер которых меньше сторон ячейки сита, %
2.5	2,5		0	0	100
1.6	1,6	2,05	0	0	100
1.0	1	1,3	0,10	0,21	99,8
063	0,63	0,815	0,40	0,82	99,0
04	0,4	0,515	1,80	3,70	95,3
0315	0,315	0,3575	4,60	9,45	85,8
02	0,2	0,2575	18,75	38,50	47,3
016	0,16	0,18	8,90	18,27	29,0
01	0,1	0,13	11,60	23,82	5,2
0063	0,063	0,0815	2,35	4,83	0,4
005	0,05	0,0565	0,15	0,30	0,1
Тазик		0,035	0,05	0,10	0
	Всего		48,70	100	

$$\delta = \frac{(d + d_{\scriptscriptstyle g})}{2}$$

$$S_p = 22,64 \frac{\sum_{i} (m_i / \delta_i)}{m}$$

$$S_p = \frac{22,64}{48,7} \cdot (\frac{0,1}{1,3} + \frac{0,4}{0,815} + \frac{1,8}{0,515} + \frac{4,6}{0,3575} + \frac{18,75}{0,2575} + \frac{8,9}{0,18} + \frac{11,6}{0,13} + \frac{2,35}{0,0815} + \frac{0,15}{0,0565} + \frac{0,05}{0,035}) = 121,5$$

Группа	Теоретическая удельная поверхность, см ² /г, не менее
Высокая	150
Средняя	100
Средняя Низкая	50

Группа	Коэффициент угловатости, ед., не более
Округлая	1,10
Полуокруглая	1,25
Угловатая	1,40

$$D = m/V$$

$$\varepsilon + \frac{\gamma - D}{\gamma}$$

$$S_{\phi} = \frac{y}{D} \sqrt{\frac{\varepsilon^3}{H}} \cdot T$$

$$K = \frac{S_{\phi}}{S_{p}}$$

				Содер: вред прим	ных.
Класс	Наименование песка	Содержание глинистой составляющей, %	Содержание кремнезема SiO _t ,	оксиды щелочно-земельных и ще-лочных металлов, %. не более	оксиды железа (Fe,O ₃). %, не более
Об1к Об2к Об3К	Обогащенный кварцевый	Не более 0,2 « » 0,5 » » 1,0	Не менее 98,5 » » 98,0 » » 97,5	0,40 0,75 1,00	0,20 0,40 0,60
1 K 2 K 3 K 4 K	Кварцевый	» » 2,0 » » 2,0 » » 2,0 » » 2,0 » » 2,0	» » 97,0 » » 96,0 » » 94,0 « » 90,0	1,20 1,50 2,0	0,75 1,00 1,50
Т	Тощий	Св. 2,0 до 10,0			- _
П	Полужирный	» 10,0 » 20,0			
ж	Жирный	» 20,0 » 30,0			
ОЖ	Очень жирный	» 30,0 » 50,0			_

Пески	Группа	Номера сит смежных размеров, на которых остаются зерна основной фракции
Грубый	063	1; 063; 04
Очень крупный	04	063; 04; 0315
Крупный	0315	04; 0315; 02
Средний	02	0315; 02; 016
Мелкий	016	02; 016; 01
Очень мелкий	01	016; 01; 0063
Тонкий	0063	01; 0063; 005
Пылевидный	005	0063; 005; тазик

1К02А обозначают кварцевый песок 1-го класса средней зернистости, группы 02, категории А.

		Mac	совая доля ком	понентов,	%	
Предприятие	Марка песка	составляющая	${ m SiO}_2$	Fe₂O₃	Оксиды щелочных и щелочно-земельных металлов	Огнеупорность, °С
Балашейский	3K ₃ O ₃ 02-025	0,2-0,9	96,8-97,8	0,2-0,4	0,38-0,8	1750
карьер	5K ₄ O ₄ O3	1,2-2,0	96,9-98,0	0,2-0,4	0,4-0,8	1750
обогатительная	1K ₂ O ₃ 03	0,2	98	0,12	0,8	1760
фабрика	1K ₂ O ₂ 02-025	0,2	98	0,12	0,8	1760
Толмачев-ский	3K ₂ O ₂ 025	0,5-0,9	98,2-98,7	0,16-0,22	0,46-0,58	1740
карьер	3K ₂ O ₃ 03	0,5-0,9	97,7-98,0	0,18-0,24	0,46-0,58	1740
	2K ₂ O ₂ 025	0,3-0,5	98,4-98,5	0,20-0,26	0,49-0,65	1750
Лужский ГОК	3K ₃ O ₂ 03	0,1-0,7	97,0-98,0	0,21-0,28	0,64-0,80	1740
	3K ₃ O ₂ 03	0,2-1,2	97,0-98,0	0,25-0,40	0,65-0,80	1750
П	2K ₂ O ₁ 02	0,1-0,3	98,0-98,8	0,1-0,24	0,40-0,52	1760
Люберецкий горно- обогатительный комбинат	2K ₂ O ₁ 02	0,1-0,3	98,0-98,5	0,14-0,26	0,42-0,60	1760
	2K ₃ O ₁ 02	0,1-0,5	97,5-98,4	0,18-0,28	0,46-0,64	1740
KOMOHRAI	3K ₃ O ₂ 02	0,2-1,0	97,0-98,0	0,18-0,28	0,46-0,65	1740

Оксид	Плотность, 10 ⁻³ , т/м ³	Температура плавления t, ⁰ C	Теплоемкость C_p , Дж/моль*К	ЛКТР 10 ⁻⁶ , л/ ⁰ С	Кислотность
SiO ₂	2.65	1710	44.4	13.7	кислотный
Al_2O_3	3.96	2050	79.1	8.8	амфотерный
MgO	3.58	2800	37.8	13.5	основной
Cr_2O_3	5.21	2275	118.9	9.6	амфотерный
$Zr\tilde{O}_{2}$	5.79	2700	56.2	10.0	амфотерный
TiO,	4.20	1830	56.4	8.1	кислотный
FeO	5.87	1368	49.9	15.2	основной

 \rightarrow

Алюмосиликатные огнеупоры (шамот, дистен-силлиманит и муллит)

Шамот получают путем обжига каолинов и огнеупорных глин; он содержит 30-70% муллита $(3A1_2O_3-SiO_2)$; имеет огнеупорность 1690-1770 °C.

$$Al_2O_3 \cdot 2 SiO_2 \cdot H_2O \rightarrow Al_2O_3 \cdot 2 SiO_2 + 2H_2O - Q$$

Дистен-силлиманит состоит из двух модификаций: дистена (синоним-кианит) и силлиманита, имеющих один и тот же химический состав- $Al_2O_3 \cdot 2 SiO_2$

Муллит плавится при температуре 1910° С, химически инертен. С кремнеземом муллит образует эвтептику (5,5% Al_2O_3 и 94,5% SiO_2) с температурой плавления 1585° С

Электрокорунд получают плавлением боксита (основа боксита - глинозем ${\rm Al}_2{\rm O}_3$) с углем в дуговых печах

В белом электрокорунде как примесь может присутствовать алюминат натрия $Na[Al(OH)_4]$, который с оксидом кремния дает соединения типа $Na_2O\cdot Al_2O_3\cdot 4SiO_2$ (температура плавления $1060^{\circ}C$) или $Na_2O\cdot Al_2O_3\cdot 6SiO_2$ (температура плавления $1100^{\circ}C$). Присутствие этих веществ вызывает падение прочностных свойств керамических форм при температуре $1060-1200^{\circ}C$

Огнеупоры на основе оксида магния

Шпинелями называют минералы общей формулы R'O \square R''O или R'(R',R'')O $_4$, где R'-Mg²⁺,Mn²⁺,Fe²⁺ и др.; R''-Al³⁺, Fe³⁺, Cr³⁺ и др.

Алюмомагнезиальная шпинель $\mathrm{MgAl}_2\mathrm{O}_4$.

Магнезиальная шпинель, являясь химическим соединением в системе MgO - SiO_2 , содержит 71,7% Al_2O_3 и 23,3% MgO, имеет температуру плавления 2105 $^{\circ}$ C, с MgO образует эвтептику с t_{nn} =1995 $^{\circ}$ C, с Al_2O_3 - t_{nn} =1920 $^{\circ}$ C.

Хромомагнезит.

Иногда называют магнезито-хромитом (от преобладающего содержания оксидов хрома или магния). Он содержит MgO не менее 42% и $\rm Cr_2O_3$, не менее 15%; имеет температуру плавления до 2200°C. В чистом виде хромомагнезит представляет собой соединение $\rm MgCr_2O_4$. Хромомагнезит получают в результате обжига при 1500-1600°C смеси, состоящей из 50— 70% хромитовой руды и 30—50% металлургического магнезита

Оливин и дунит

Оливин представляет собой изоморфную смесь форстерита $2MgO-SiO_2$ и фаялита $2FeO-SiO_2$; Оливин имеет состав, % масс.: 48-50~MgO, 8-10~(до~20) FeO, 0,1~NiO, до 0,01~CoO, присутствуют также оксиды марганца, кальция, алюминия ($SiO_2=38-52$). Температура плавления оливина $1890^{\circ}C$, примеси снижают её до $1620^{\circ}C$

Форстерит. Иначе - ортосиликат магния имеет теоретический состав, % масс.: 57,1 MgO, 42,9 SiO₂.

Ставролит и пирофиллит. Ставролит содержит, % масс.: 55,9 ${\rm Al_2O_3}$, 26,3 ${\rm SiO_2}$, 15,8 FeO, 2,0 ${\rm H_2O}$. Fe²⁺ в значительных количествах заменяется ${\rm Mn^{2+}}$. Пирофиллит состоит: 66,7 ${\rm SiO_2}$, 28,3 ${\rm Al_2O_3}$, 5,0 ${\rm H_2O}$, примесями могут быть оксиды железа, кальция, титана.

Хромит (хромистый железняк или $FeO\cdot Cr_2O_3$). Получают обжигом при $900-1100^{0}C$ соответствующей руды или боя металлургического хромистого железняка с последующим размолом и рассевом.

 Cr_2O_3 не менее 45, Fe_2O_3 не более 26, SiO_2 не более 8 и CaO не более 2,5.

Хромитовые пески на ситах 1,6—01 имеют остаток 60—70%, на ситах 0063, 005 и в тазике — 30—40%

Цирконовый песок представляет собой природный минерал — $ZrO_2 \cdot SiO_2$ соединение $ZrSiO_4$ (или $ZrO_2 \cdot SiO_2$), является силикатом циркония, называют цирконом или реже силикатом циркония, встречается в россыпях.

Материал	Массовая доля,	%	Огнеупорнос	Область применения
-	Основной	Вредных	ть, °С	
	компонент	примесей		
Шамотный	32 Al ₂ O ₃	-	1690	Для многократных форм, противопригарных
порошок ПШС	2 3			красок при литье марганцовистых сталей
Хромитовые	≥45 Cr ₂ O ₃	≤8 SiO ₂	1600-1800	Для облицовочных смесей при получении
порошки ПХК	$\geq 30 \operatorname{Cr}_{2}^{2} \operatorname{O}_{3}^{3}$	≤2,5 CaO		крупных стальных отливок
ПХС	2 3	$\leq 10 \text{ SiO}_2$		
		≤ 3 CaO ²		
Дистенсиллиман	\geq 75 Al ₂ O ₃	≤0,8 Fe ₂ O ₃	1800	Для формовочных и стержневых смесей при
ИТ	2 3	≤0,2 CaO ³		получении крупных отливок из
		≤0,4MgO		высоколегированных сталей, в том числе
		≤1,5TiO ₂		марганцовистых, для противопригарных
		2		красок
Оливиновый	46-50 MgO	≤10-12 Fe ₂ O ₃	1750-1830	Для облицовочных смесей и покрытий при
песок	42-43 SiO ₂	$\leq 2 \left(Al_2 O_3 + \right)$		изготовлении форм и стержней для крупных
		Cr_2O_3+		отливок из высоколегированных сталей, в
		CaO+MgO		том числе марганцовистых
Магнезитовый	91 MgO	3,5 CaO	1900-2000	Для облицовочных смесей,
порошок МФЛ		3,0 SiO ₂		противопригарных красок при изготовлении
				отливок из высокомарганцовистых сталей
Магнензито-	15-25 Cr ₂ O ₃		2000-	Для облицовочных смесей,
	MgO	5 SiO ₂	2100	противопригарных красок и паст при
хромомагнезито		$7SiO_2$		получении крупных стальных отливок,
вые ПМХТ	55 MgO			особенно из высоколегированных сталей.
ПХМТ				
Корунд	$98.5 \text{ Al}_2\text{O}_3$		2050	Для облицовочных смесей при производстве
				стальных отливок
Цирконовые	97-98.5 ZrSiO ₄	1.5-3.0	2430-2450	Для формовочных материалов при получении
Ц1	94-96.5 ZrSiO ₄	3.5-6.0		крупных, толстостенных отливок, когда смесь
Ц2		примеси		подвергается длительному воздействию
				высоких температур при высоком
				гидростатическом давлении

Теплофизические свойства высокоогнеупорных материалов

Management	атура ия, °С	10- рующая ность, с ^{1/2} -К)	Темпера коэффициент ра в интервале 3	ρ,	
Материал	Температура плавления, °С	Тепло- аккумулирующая способность, Дж $(M^2 \cdot c^{1/2} \cdot K)$	объемного	линейного	кг/м ³
Кварцевый песок SiO ₂	1550– 1713	1260	1,54	13,7·10 ⁻⁶	2650
Дистен-силлиманит Al ₂ O ₃ ·SiO ₂	1800– 1830	1470	0,43	_	3250
Циркон ZrO ₂ ·SiO ₂	2600	1820	0,16-0,63	5,5·10 ⁻⁶	4570
Рутил ТіO ₂	1560– 1570	1960	0,25–0,92	-	4200– 4300
Хромомагнезит MgO·Cr ₂ O ₃	2000– 2100	2100	0,8-0,9	_	3900
Хромит FeO·Cr ₂ O ₃	1600– 1800	2380	0,7	_	3760– 4280
Магнезит MgCO ₃	2000– 2800	_	_	13,5·10 ⁻⁶	2900
Оливиниты, дуниты $(Mg,Fe)_2SiO_4$	1830– 1750	-	-	_	3200– 3500
Шамот (40% Al ₂ O ₃ , остальное SiO ₂)	1580– 1750	_	_	$(4,5 \div 6,0) \cdot 10^{-6}$	3000
Муллит 3Al ₂ O ₃ · 2SO ₂	1810	-	_	-	3030