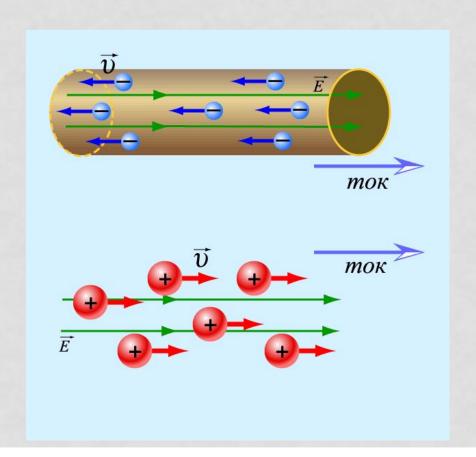
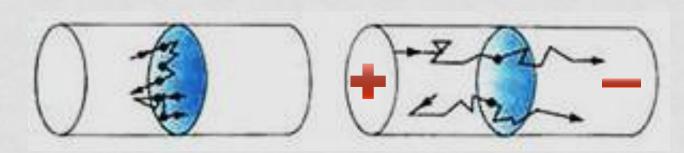

ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

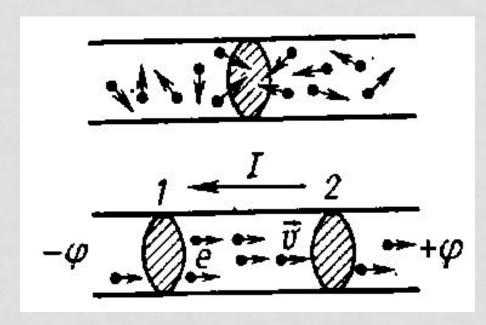
11 KAACC

Богданова И.В., 2012-13 уч. год


УСЛОВИЕ СУЩЕСТВОВАНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

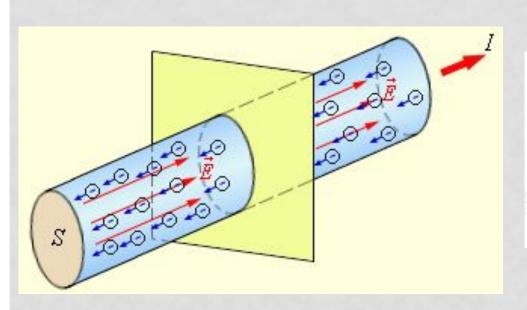
- Наличие свободных электрических зарядов
- Наличие разности потенциалов на концах проводника




ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА

• Направленное (упорядоченное) движение заряженных частиц

НАЛОЖЕНИЕ НАПРАВЛЕННОГО НА ХАОТИЧЕСКОЕ ДВИЖЕНИЕ ЧАСТИЦ


ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

ОПРЕДЕЛЕНИЕ СИЛЫ ТОКА

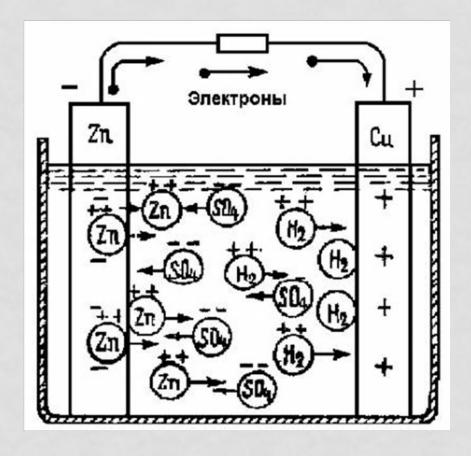
- Предел отношения бесконечно малого изменения электрического заряда, проходящего через поперечное сечение проводника, к бесконечно малому промежутку времени, в течение которого это изменение произошло. $I=\lim_{T} \Delta t \rightarrow 0 \Delta q/\Delta t$
- Единица измерения силы тока -1 A (ампер) 1A = 1Кл/ с

ВЫВОД ФОРМУЛЫ СИЛЫ ТОКА

$$\Delta N = n \cdot \Delta V = n \cdot S \cdot v_{cp} \cdot \Delta t$$
, $\Delta q = e \cdot n \cdot S \cdot v_{cp} \cdot \Delta t$,
$$\Delta T = \frac{\Delta q}{\Delta t} = e \cdot n \cdot S \cdot v_{cp}$$

Если $\upsilon = \text{const}$, то I = const — постоянный электрический ток

ИСТОЧНИКИ ТОКА


• Устройство, разделяющее положительные и отрицательные заряды

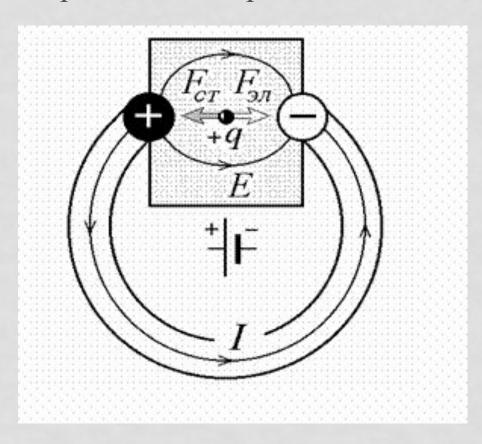
Виды источников тока

Источник тока	Способ разделения зарядов	Применение
1. Генератор	Совершение механической работы	Производство электроэнергии
2. Термоэлемент	Нагревание спаев	Измерение температуры
3. Фотоэлемент	Световое воздействие	Солнечная батарея
4. Гальванический элемент	Химическая реакция	Фонарики, плееры
5. Аккумулятор	Химическая реакция	Автомобили, подводные лодки

ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ ВОЛЬТА

НОРМАЛЬНЫЙ ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ

• Потенциалы на электродах, отсчитываемые относительно водородного потенциала


Вещество	Нормальный потенциал, В	Вещество	Нормальный потенциал, В
Қалий Қальций Натрий Магний Алюминий Цинк Хром Қобальт	-2,92 -2,87 -2,71 -2,34 -1,67 -0,76 -0,71 -0,277	Олово Никель Свинец Водород Медь Ртуть Серебро	-0,14 -0,25 -0,13 0,00 +0,34 +0,86 +0,80

электродвижущая сила (ЭДС) гальванического элемента

• E =

ИСТОЧНИК ТОКА В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

• Сторонние силы – силы неэлектрического происхождения, вызывающие разделение зарядов

ЭДС ИСТОЧНИКА ТОКА

$$\varepsilon = \frac{Ac\tau}{q}$$

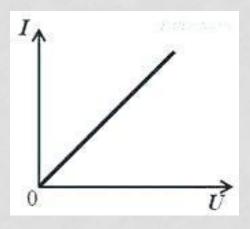
$$\bullet \Delta W = A_{cr} + A_{conp}$$

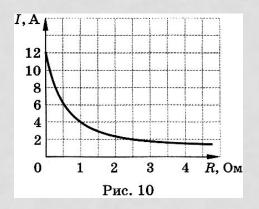
- $\Delta W/q = AcT/q |Aconp|/q$
- U = E |Aconp|/q
- Цепь замкнута $A_{conp} \neq o$ U < E
- Цепь разомкнута $A_{conp} = 0$ U = E

ЗАКОН ОМА ДЛЯ ОДНОРОДНОГО ПРОВОДНИКА

• Проводник, в котором не действуют сторонние силы

$$a = \frac{F_k}{m_e} = \frac{eE}{m_e} = \frac{e \cdot \frac{U}{d}}{m_e}$$


$$I = enSv = enS \cdot \frac{eU}{m_e} \cdot t$$


$$I = \frac{ne^2t}{m_e} \cdot \frac{S}{\mathbb{N}} \cdot U = \frac{U}{\frac{m_e}{ne^2t}} \cdot \frac{S}{S} \cdot U = \frac{U}{ne^2t} \cdot \frac{S}{S} \cdot U = \frac{U}{ne^2t} \cdot \frac{S}{S} = \frac{U}{ne^$$

$$I = enSv = enS \cdot \frac{eU}{m_e \mathbb{Z}} \cdot t$$

$$I = \frac{ne^2t}{m_e} \cdot \frac{S}{\mathbb{Z}} \cdot U = \frac{U}{\frac{m_e}{ne^2t} \cdot \frac{\mathbb{Z}}{S}}$$
Обозначим $\frac{m_e}{ne^2t} \cdot \frac{\mathbb{Z}}{S} = R$

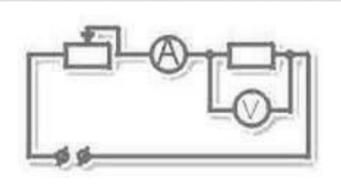
$$I = \frac{U}{R}$$

СОПРОТИВЛЕНИЕ ПРОВОДНИКА

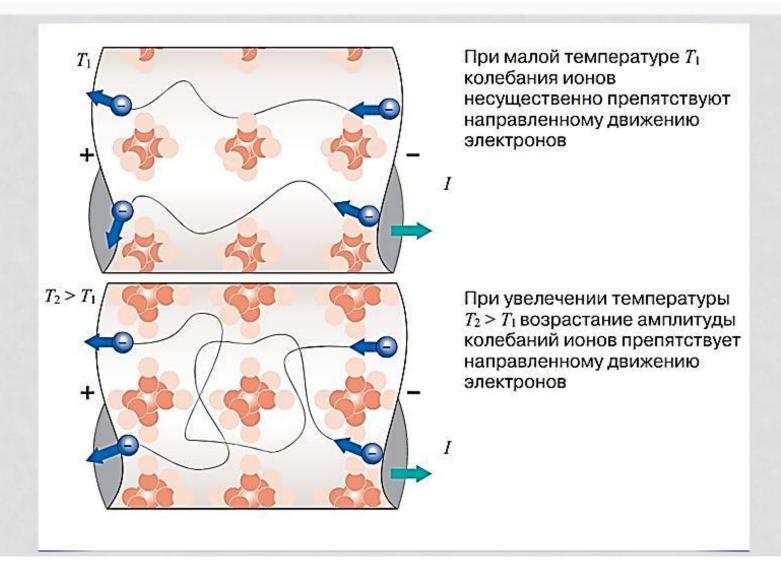
• Причина существования сопротивления

$$R = \frac{m_e}{ne^2t} \cdot \frac{\mathbb{Z}}{S}$$

Обозначим
$$\frac{m_e}{ne^2t} = \rho_{\rm BR}$$


$$R = \rho_{\scriptscriptstyle 9.7} \frac{\mathbb{N}}{S}$$

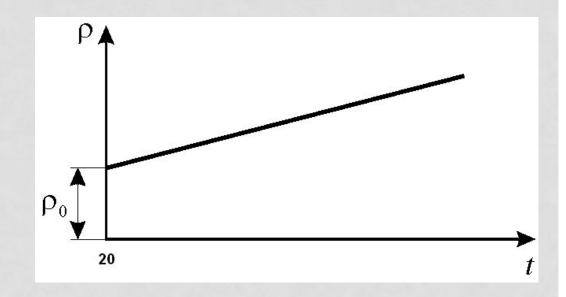
удельное сопротивление проводника


КЛАССИФИКАЦИЯ ВЕЩЕСТВ ПО СТЕПЕНИ ПОДВИЖНОСТИ ЗАРЯЖЕННЫХ ЧАСТИЦ

Проводники	Полупроводники	Диэлектрики
$\rho_{\scriptscriptstyle \mathfrak{I}} < 10^{-5} Om \cdot M$	$10^{-5} OM \cdot M < \rho_{\scriptscriptstyle \mathfrak{I}} < 10^{5} OM \cdot M$	$ \rho_{\scriptscriptstyle \mathfrak{I}} > 10^5 O_{\scriptscriptstyle \mathcal{M}} \cdot M $

ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ ПРОВОДНИКА ОТ ТЕМПЕРАТУРЫ

ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ ПРОВОДНИКА ОТ ТЕМПЕРАТУРЫ

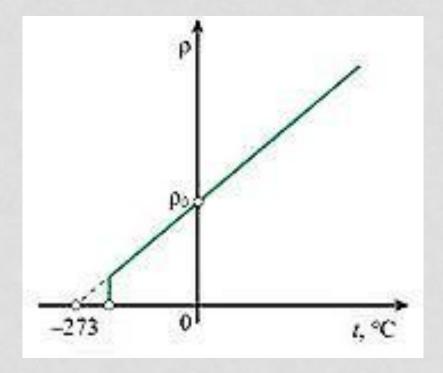

$$\Pi pu T_0 = 293K - \rho_0$$

$$\Pi pu T > T_0 - \rho$$

$$\frac{\rho - \rho_0}{\rho_0 \cdot \Delta T} = \alpha$$

$$\rho = \rho_0 (1 + \alpha \Delta T)$$

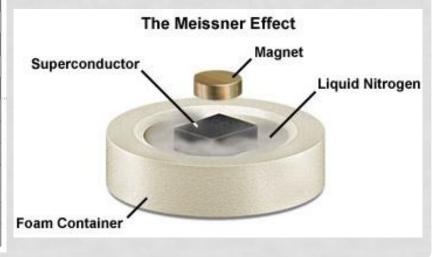
$$R = R_0 (1 + \alpha \Delta T)$$



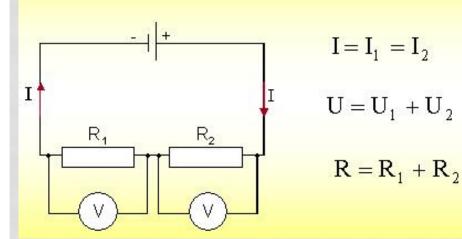
$$\alpha \approx \frac{1}{273} \text{K}^{-1}$$

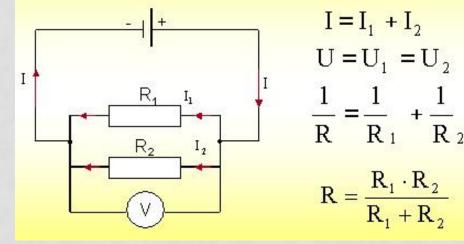
СВЕРХПРОВОДИМОСТЬ



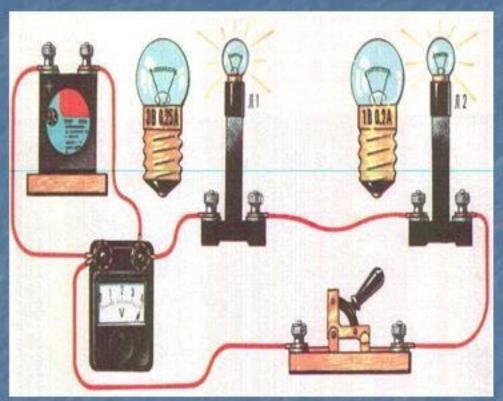

- 1911 г.
- Г. Каммерлинг Оннес

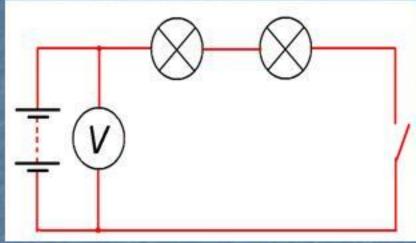
СВЕРХПРОВОДИМОСТЬ


Критическая- температура- <i>Т</i> _с - (в°Кельвинах)	Вещество	Дата∙открытия
184	Самая·низкая·зафиксированная- температура·на·Земле	
134 ⁹	HgBa ₂ Ca ₂ Cu ₃ O ₈	1993
125	Tl ₂ Ba ₂ CaCu ₃ O ₁₀	1988
105	Tl ₂ Ba ₂ CaCuO ₈	1988
92	YBa ₂ Cu ₃ O ₇	1987
77	Температура·кипения·жидкого· азота	
55 ⁸	SmO _{1.x} F _x FeAs·(x=0,1)	2008
52	PrO _{1.x} F _x FeAs·(x=0,11)	2008
41	CeO _{1.x} F _x FeAs·(x=0-0,2)	2008
40	La _{2-x} Sr _x CuO ₄ ·(x=0,15)	1986
36	GdO _{17x} F _x FeAs·(x=0.17)	2008
30 ⁷	La _{2-x} Ba _x CuO ₄ ·(x=0,15)	1986
26 ⁶	LaO _{1-x} F _x FeAs·(x·=·0.05-0.12)	2008
23,2 ⁵	Nb₃Ge	1973
18,14	Nb₃Sn	1954
10 3,4	NbTi	1962
4,2	Температура·кипения·жидкого· гелия	
4,15 ²	Hg	1911
0,000211	Rh	1983



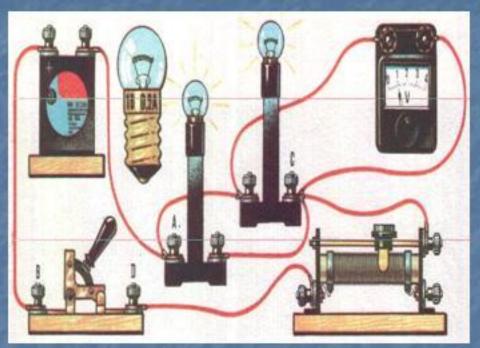
СОЕДИНЕНИЕ ПРОВОДНИКОВ

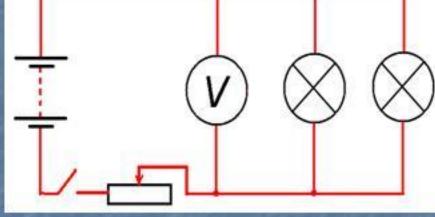

Последовательное соединение



Параллельное соединение

7. Последовательное соединение проводников.

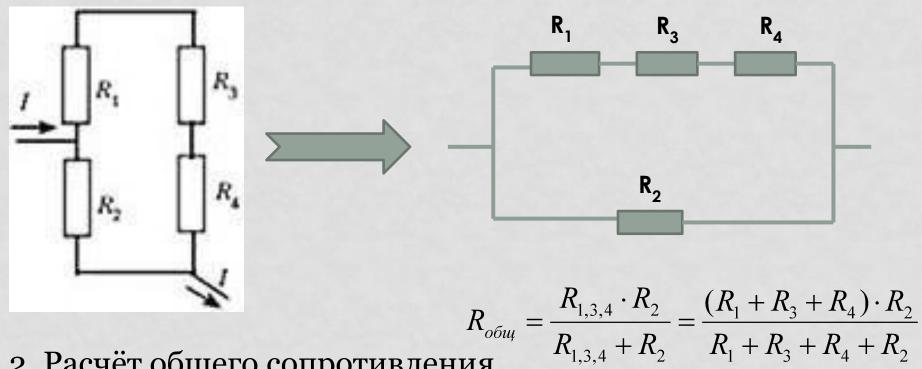




Принципиальная схема

Монтажная схема

8. Параллельное соединение проводников.

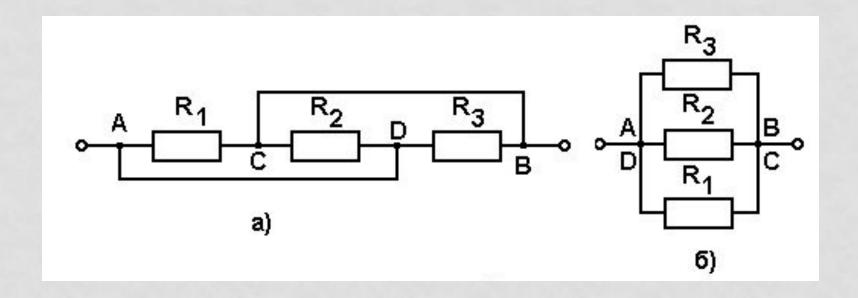


Принципиальная схема

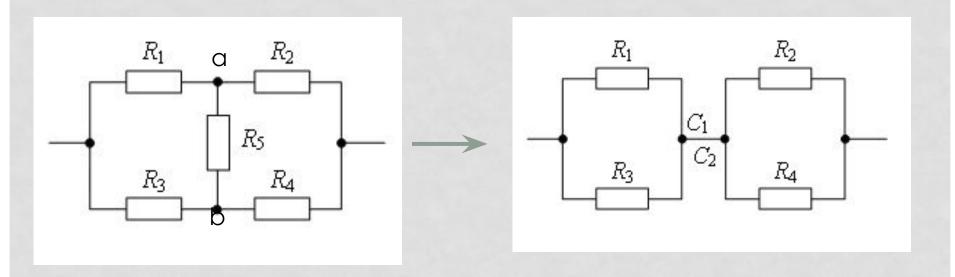
Монтажная схема

СМЕШАННОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ

1. Замена данной цепи эквивалентной ей

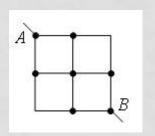


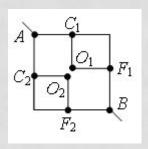
2. Расчёт общего сопротивления

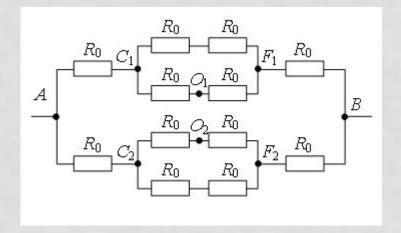

ТОЧКИ РАВНОГО ПОТЕНЦИАЛА

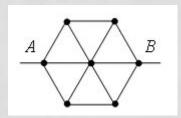
•
$$\phi_1 = \phi_2$$
 \longrightarrow $\phi_1 - \phi_2 = 0$ \longrightarrow $I = 0$

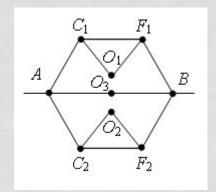
• В эквивалентной схеме сопротивления проводников, соединяющих такие точки, можно не учитывать, либо заменить перемычкой

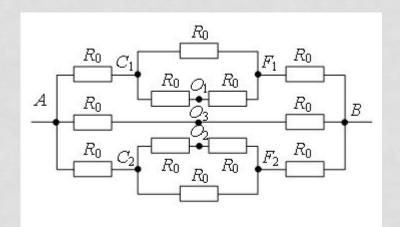


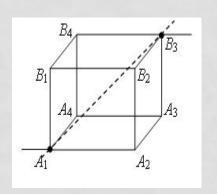

МОСТИК УИТСТОНА

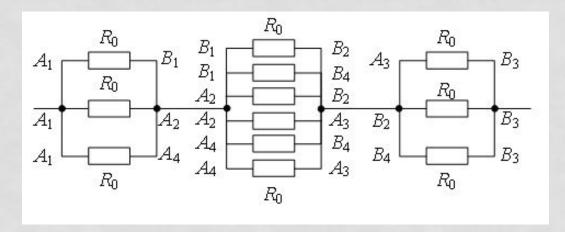


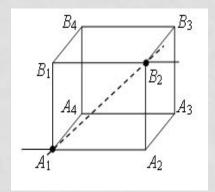

- ullet Ток через $R_{_5}$ не идёт, если $\phi_{a}=\phi_{b}$
- При этом $\mathbf{R_1}\mathbf{R_4} = \mathbf{R_2}\mathbf{R_3}$

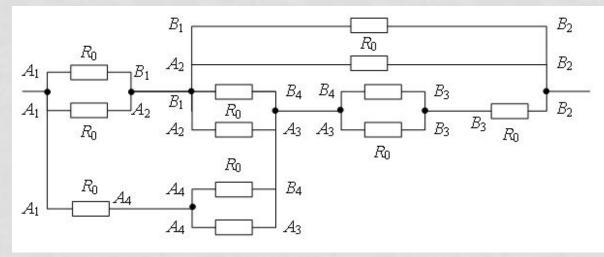

РЕШЕНИЕ ЗАДАЧ





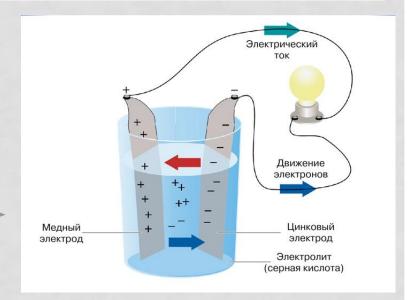


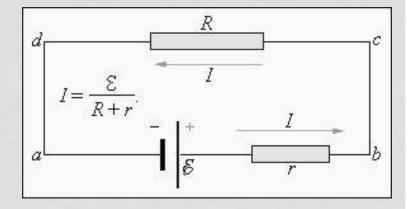




РЕШЕНИЕ ЗАДАЧ

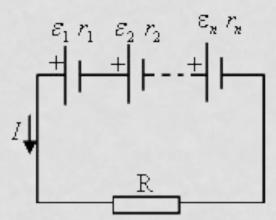
ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ

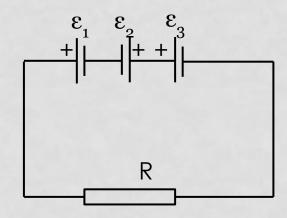

•
$$U = E - |Aconp|/q$$


•
$$U = I R$$

$$IR = E - Ir$$

$$\rightarrow$$
 $I=E/R+r$


- |Aconp|/q = Ir
- Короткое замыкание при R = 0 $I_{\kappa,3} = E/r$


ЦЕПЬ С НЕСКОЛЬКИМИИСТОЧНИКАМИ ТОКА

• Согласованное включение

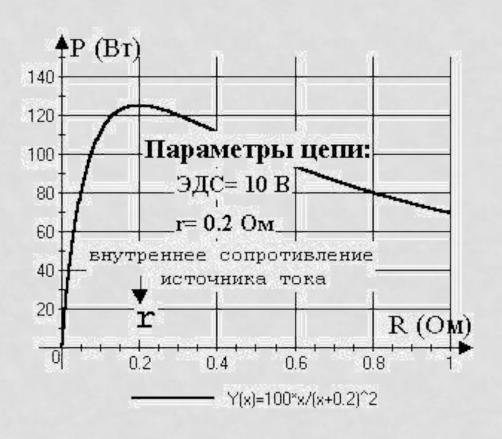
$$I = \frac{\sum \boldsymbol{\varepsilon}_{i}}{R + \sum \boldsymbol{r}_{i}}$$

• Встречное включение

$$\epsilon_1, \epsilon_3 > 0$$
 $\epsilon_2 < 0$

КПД ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

$$\eta = \frac{A_n}{A_3} = \frac{P_n \cdot t}{P_3 \cdot t} = \frac{P_n}{P_3} = \frac{I^2 R}{I^2 (R+r)} = \frac{R}{R+r}$$


$$\eta = \frac{A_n}{A_3} = \frac{IUt}{I\varepsilon t} = \frac{U}{\varepsilon}$$

полезная мощность

$$P_n = I^2 R = \frac{\varepsilon^2}{(R+r)^2} R$$

 P_n — максимальна

npu R = r

МОЩНОСТЬ ПОТЕРЬ

$$P_{nomepb} = P_3 - P_n = I^2(R+r) - I^2R = I^2r$$

$$I = \frac{P_3}{\varepsilon} \approx \frac{P_3}{U}$$

$$P_{nomepb} = \frac{P_3^2}{U^2}r$$

$$P_{nomepb} \downarrow npu$$

$$U \uparrow$$

ИСПОЛЬЗОВАННЫЕ РЕСУРСЫ

- http://www.krugosvet.ru/enc/nauka_i_tehnika/tehnologiya_i_p
 romyshlennost/SVERHPROVODIMOST.html?page=0,6
- http://www.alsak.ru/content/view/27/
- http://www.physbook.ru/index.php/%D0%9A%D0%A1._%D 0%9F%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0
 %BD%D0%BD%D1%8B%D0%B9_%D1%82%D0%BE%D0
 %BA_%D0%B4%D0%BB%D1%8F_%D1%83%D1%87%D0
 %B0%D1%81%D1%82%D0%BA%D0%B0_%D1%86%D0
 %B5%D0%BF%D0%B8
- В.А. Касьянов. Физика 11 класс. Профильный уровень