

Совершенствование железооксидного катализатора дегидрирования за счёт стабилизации ферритных фаз

Докладчик:

магистрант гр. МТС-18-31

Сафуанов Д.Р.

Руководитель:

доцент, канд. техн. наук

Каримов Э.Х.

Актуальность работы

Изопрен

 $CH_2 = C - CH = CH_2$ CH_3

Изопреновые каучуки (более 95% изопрена)

Применение

Транс-полиизопрен

Душистые вещества и лекарственные средства

Изопрен-стирольные термоэластопласты

Химизм процесса дегидрирования метилбутенов

Основная реакция

$$CH_3 - CH_2 - C = CH_2$$

$$CH_3$$

$$CH_3 - CH = C - CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_2 = CH - CH - CH_3$$

CH₃

t, кат. изопрен $CH_2 = CH - C = CH_2$ $-H_2$ CH_3

Побочные реакции

- 1) изомеризация изоамиленов $iC_5H_{10} \longrightarrow nC_5H_{10}$
- 2) изомеризация с перемещением двойной связи изоамиленов 2-метилбутен-1 <=> 3-метилбутен-1 <=> 2-метилбутен-2
- **4)** дегидрирование н-амиленов $nC_5H_{10} <=> CH_2 = CH CH_2 CH = CH_2 + H_2$
- **5)** димеризация изопрена $2iC_5H_8 <=> C_{10}H_{16}$

7) крекинг изоамиленов

$$iC_5H_{10} \longrightarrow CH_4 + C_4H_6$$
 $C_2H_4 + C_3H_6$
 $C_2H_2 + C_3H_6 + H_2$

Реакции, протекающие при прокаливании гранул железооксидного катализатора при 600-650 °C

$$Fe_{2}O_{3} + K_{2}CO_{3} = \frac{500-650 \text{ C}^{0}}{11}K_{2}Fe_{2}O_{4} + CO_{2}$$

$$11Fe_{2}O_{3} + K_{2}CO_{3} = \frac{500-650 \text{ C}^{0}}{11}K_{2}Fe_{22}O_{34} + CO_{2}$$

Активным центром катализатора является совокупность трёх фаз — моноферрит калия (КFeO₂ или К₂Fe₂O₄) + полиферрит калия (К₂Fe₂₂O₃₄) + магнетит (Fe₃O₄)

Научная новизна

Впервые проведена поэтапная пропитка калием структуры гематита и ферритов калия с периодическим прокаливанием при 680 °C

Методика получения стандартного образца катализатора

Стадия I — Дозировка сухих компонентов и их перемешивание

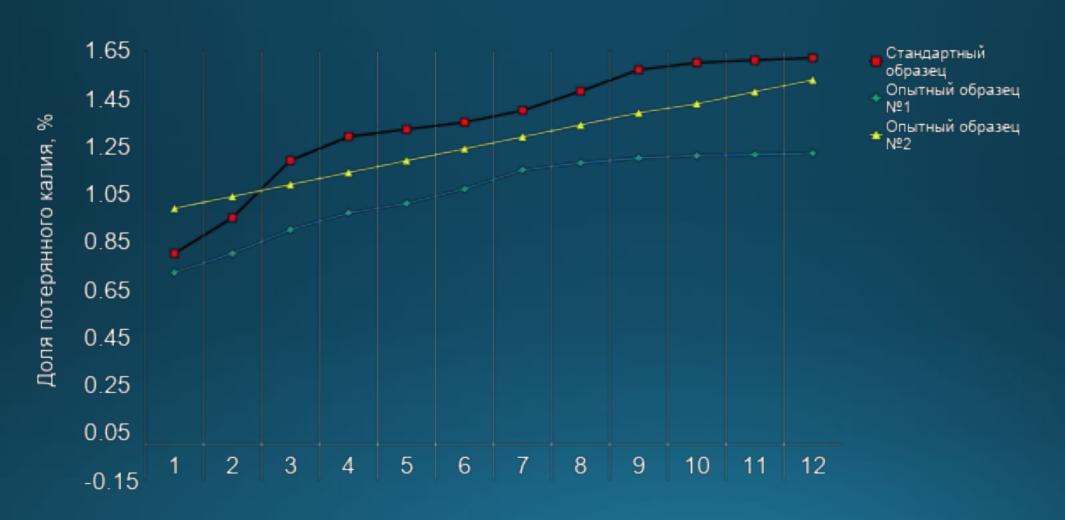
Стадия II – Пропитывание компонентов раствором карбоната калия на 100%

Стадия III — Перемешивание компонентов до пасты, экструдирование в гранулы, сушка при 120 °C

Стадия IV – Прокаливание образца в муфельной печи при 680 °C

Методика получения опытных образцов №1/№2 катализатора

Стадия I — Дозировка сухих компонентов и их перемешивание


Стадия II — Пропитывание компонентов раствором карбоната калия на 50/30%

Стадия III – Перемешивание компонентов до пасты, экструдирование в гранулы, сушка при 120 °C

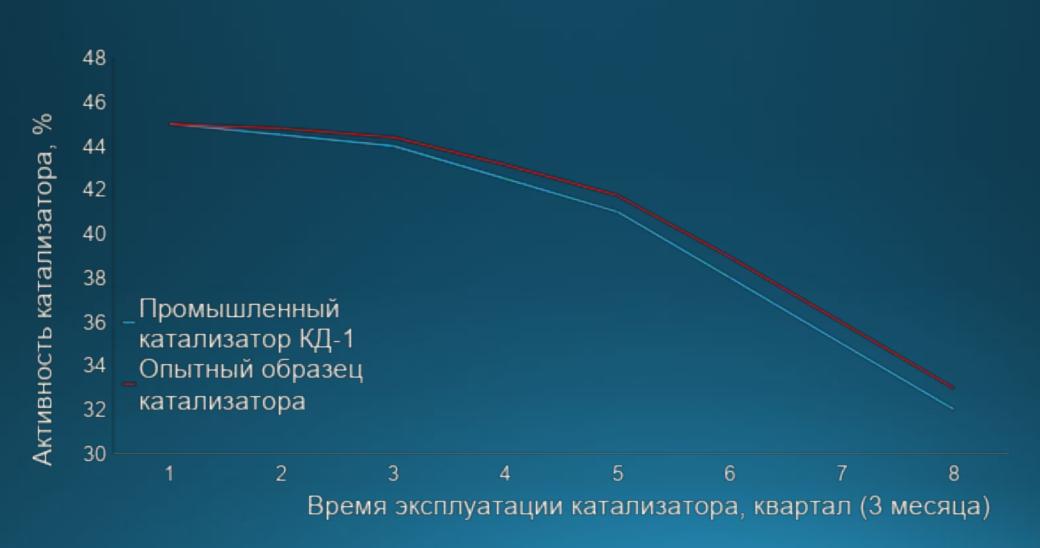
Стадия IV – Прокаливание образца в муфельной печи при 680 °C

1 раз / 2 раза

Потеря катализатором калиевого промотора при продолжительном контакте с водой

Кинетика процесса дегидрирования метилбутенов в изопрен

изо-
$$C_5H_{12}$$
 изо- $C_5H_{10} + H_2$ $W_1 = \frac{k_1C_1 - k_{-1}C_2C_4}{(1 + b_{11}C_1 + b_{12}C_2 + b_{13}C_3)^2} \phi$ изо- C_5H_{10} изо- $C_5H_8 + H_2$ $W_2 = \frac{k_2C_2 - k_{-2}C_3C_4}{(1 + b_{21}C_1 + b_{22}C_2 + b_{23}C_3)^2} \phi$ изо- $C_5H_8 \rightarrow v_1$ {кокс} $+ v_2 H_2 + v_3 \Pi K$ $W_3 = \frac{k_3C_3}{1 + b_3C_4} \phi$ $W_4 = \frac{k_4}{1 + b_4C_4} \phi$


Сі – концентрация компонентов моль/л, индексация компонентов по і: 1 – изопентан, 2 – метилбутены, 3 – изопрен, 4 – водород, 5 – продукты скелетных превращений, 6 – диоксид углерода;

W_j – скорости химических реакций (кмоль/м3/ч); k_i константы скоростей реакций; b1 – коэффициенты адсорбции (м3/моль).

При расчёте модели также учитывали функцию падения активности: φ=exp(-α·m_c), где mc – количество кокса на катализатора

$$\varphi = \exp(-\alpha \cdot m_c)$$

График зависимости активности железокалиевого катализатора от времени эксплуатации

Спасибо за внимание!