
Погическая операция — способ построения сложного высказывания из данных высказываний, при котором значение истинности сложного высказывания полностью определяется значениями истинности исходных высказываний.

Инверсия (логическое отрицание)

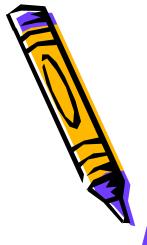
• Инверсия логической переменной истина, если переменная ложна, и, наоборот, инверсия ложна, если переменная истинна.

• Обозначение: \overline{A}

A	\overline{A}
1	0
0	1

Конъюнкция (логическое умножение)

• Конъюнкция двух логических переменных истинна тогда и только тогда, когда оба высказывания, истинны.


Обозначение: AWB, еще можно AHB


A	B	AWB
1	1	1
1	0	0
0	1	0
0	0	0

Дизъюнкция (логическое сложение)

- Дизъюнкция двух логических переменных ложна тогда и только тогда, когда оба высказывания ложны.
- Обозначение: $A \lor B$

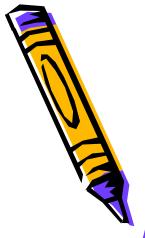
A	B	$A \vee B$
1	1	1
1	0	1
0	1	1
0	0	0

Импликация (логическое следование)

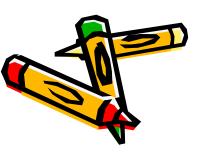
 Импликация двух логических переменных ложна тогда и только тогда, когда из истинного основания следует ложное следствие.

• Обозначение: $A \rightarrow B$

A - условие


B - следствие

A	B	$A \rightarrow B$
1	1	1
1	0	0
0	1	1
0	0	1



Эквивалентность (логическое равенство)

• Эквивалентность двух логических переменных истинна тогда и только тогда, когда оба высказывания одновременно либо ложны, либо истинны.

• Обозначение: $A \leftrightarrow B$

A	B	$A \longleftrightarrow B$
1	1	1
1	0	0
0	1	0
0	0	1

Приоритет выполнения логических операций

При вычислении значения логического выражения (формулы) логические операции вычисляются в определенном порядке, согласно их приоритету:

1.инверсия,

2.конъюнкция,

3.дизъюнкция,

4.импликация и эквивалентность.

Операции одного приоритета выполняются слева направо. Для изменения порядка действий используются скобки.

Пример

Дана формула $A \lor B \to C \cdot D \leftrightarrow \overline{A}$

$$A \lor B \to C \cdot D \longleftrightarrow A$$

Определите порядок вычисления.

Порядок вычисления:


Инверсия – А

Конъюнкция – С. Д

Дизъюнкция – $A \lor B$

Импликация – $A \lor B \to C \cdot D$

Эквивалентность – $A \vee B \rightarrow C \cdot D \leftrightarrow A$

Пример 2.

Даны простые высказывания:

$$A={3+3=5},$$

 $D={4\neq 4}.$

$$B = {\sqrt{9} = 3},$$

$$C = \{0 < 5^2\},$$

Вычислить:

 $A \leftrightarrow B \cap C \cup D$

1. Определяем чему равны простые высказывания:

A=0 (ложь), B=1 (истина), C=1, D=0

- 2. Определяем порядок действий
 - 1. конъюнкция $B \cap C$
 - 2. дизъюнкция потом $B \cap C \cup D$
 - 3. Эквивалентность $A \leftrightarrow B \cap C \cup D$

To есть: $A \leftrightarrow B \cap C \cup D$

Подставляем значения вместо A- 0, вместо B -1, C-1, D-0

 $\mathbf{0} \leftrightarrow \mathbf{1} \cap \mathbf{1} \cup \mathbf{0} = ($ сначала делаем конъюнкцию)

 $\mathbf{0} \leftrightarrow \mathbf{1} \cup \mathbf{0}$ =потом дизъюнкцию $\mathbf{0} \leftrightarrow \mathbf{1}$ потом эквивалентность $\mathbf{0} \leftrightarrow \mathbf{1} = \mathbf{0}$ Ответ $\mathbf{0}$

