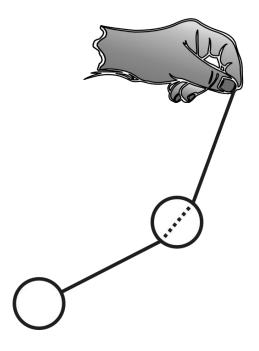


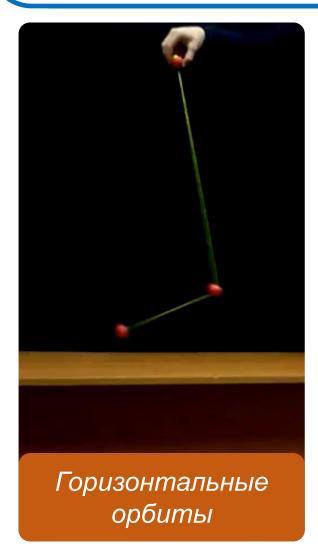
Докладчик - Хорошко Илья

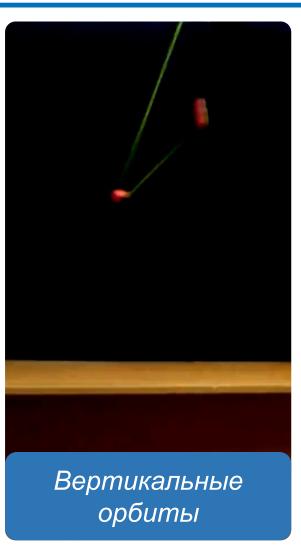
Наденьте шарик со сквозным отверстием на нить так, чтобы он мог свободно двигаться вдоль нити. На конце нити закрепите другой шарик. Если периодически двигать свободный конец нити, то можно наблюдать сложное движение обоих шаров. Исследуйте явление.

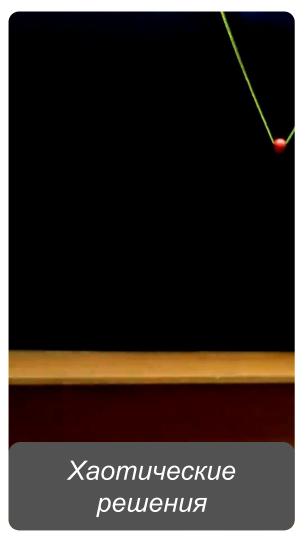


Демонстрация эффекта

IYPT 2019 Team 2 Ukraine







Предварительная

uacml

Структура доклада

IYPT 2019 Team 3 Ukraine

Горизонтальные орбиты

Стационарное решение Учёт силы трения Экспериментальное изучение

Вертикальные орбиты

Уравнение движения Асимптотический анализ Экспериментальное изучение

Хаотические решения

Моделирование движения системы

IYPT 2019 Team 4 Ukraine

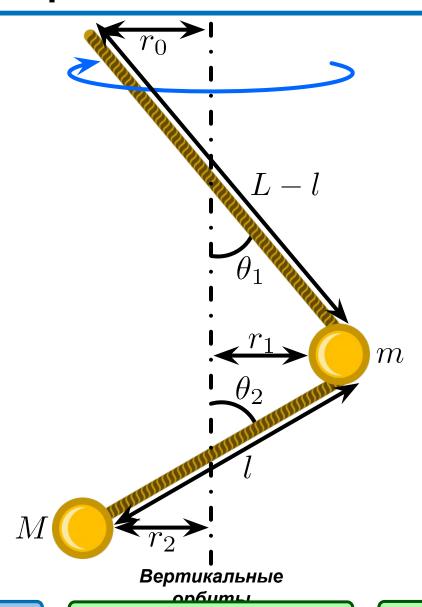
Горизонтальные решения

Горизонтальные

Вертикальные

Геометрия системы

IYPT 2019 Team 5 Ukraine



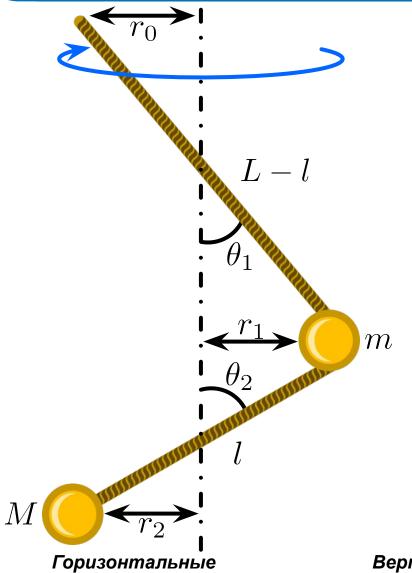
Горизонтальные

Хаотические

пошонна

Геометрия системы

IYPT 2019 Team 6 Ukraine



Из геометрии системы следvem

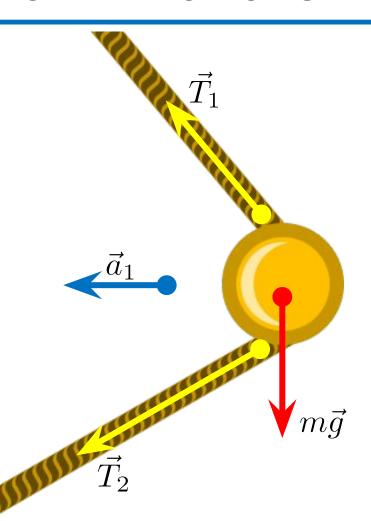
$$\begin{cases} r_1 + r_0 = (L - l)\sin\theta_1 \\ r_1 + r_2 = l\sin\theta_2 \end{cases}$$

Чтобы описать движение системы найдём: r_1, r_2, l

Вертикальные

Анализ сил в системе

IYPT 2019 Team 7 Ukraine

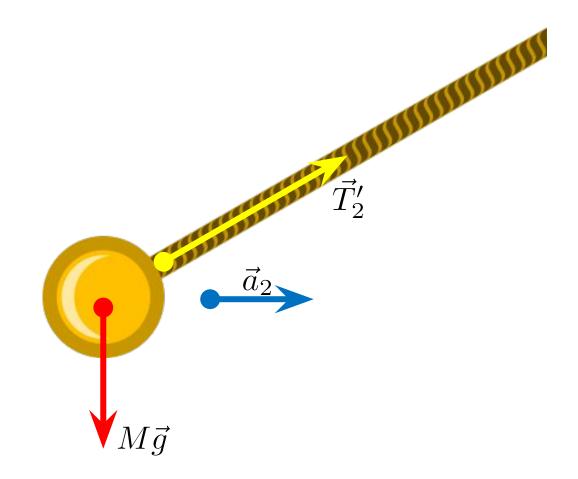


Горизонтальные

Вертикальные <u>орбиты</u>

Анализ сил в системе

IYPT 2019 Team 8 Ukraine

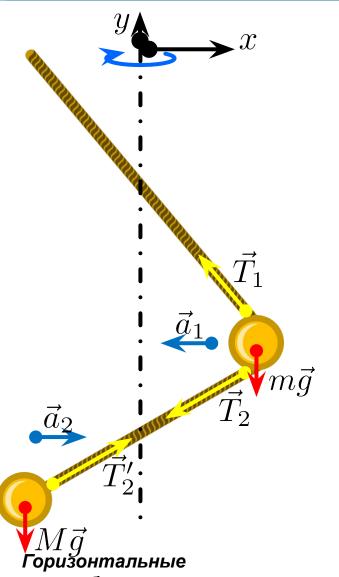


Горизонтальные

Вертикальные

Уравнения движения

Team 9
Ukraine



Второй закон Ньютона для обоих шариков

$$m\vec{g} + \vec{T}_1 + \vec{T}_2 = m\vec{a}_1$$
$$M\vec{g} + \vec{T}_2' = M\vec{a}_2$$

В проекциях на оси у и х

попучаем:

$$\begin{cases}
-T_1 \sin \theta_1 - T_2 \sin \theta_2 = -m\omega^2 r_1 \\
T_1 \cos \theta_1 - T_2 \cos \theta_2 - mg = 0 \\
T_2 \sin \theta_2 = M\omega^2 r_2 \\
T_2 \cos \theta_2 - Mg = 0
\end{cases}$$

Вертикальные

Хаотические

пошонна

Конечная система уравнений

IYPT 2019 Team 10 Ukraine

Уравнения движения

$$\begin{cases}
-T_1 \sin \theta_1 - T_2 \sin \theta_2 = -m\omega^2 r_1 \\
T_1 \cos \theta_1 - T_2 \cos \theta_2 - mg = 0 \\
T_2 \sin \theta_2 = M\omega^2 r_2 \\
T_2 \cos \theta_2 - Mg = 0
\end{cases}$$

Переменные системы

 T_1, T_2 $l, r_1, r_2, \theta_1, \theta_2$

Решаем систему в приближении отсутствия сил трения, тогда силы натяжения нитей считаем

Геометрические *условия*

$$\begin{cases} r_1 + r_0 = (L - l)\sin\theta_1 \\ r_1 + r_2 = l\sin\theta_2 \end{cases}$$

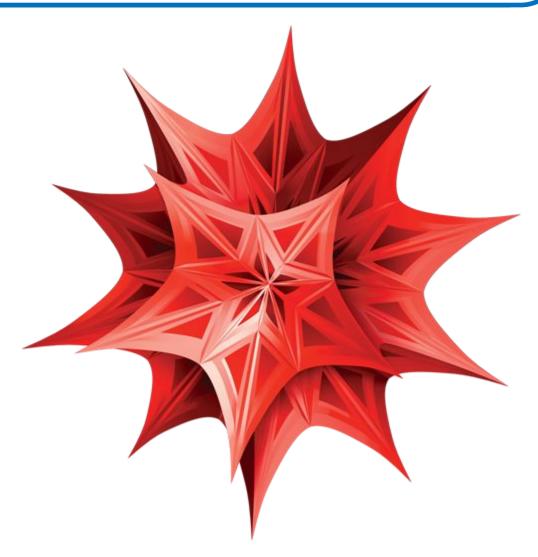
Горизонтальные

Вертикальные

 $T_1 = T_2$

Численное решение

Team 11
Ukraine



Горизонтальные

Вертикальные

Численное решение

Горизонтальные

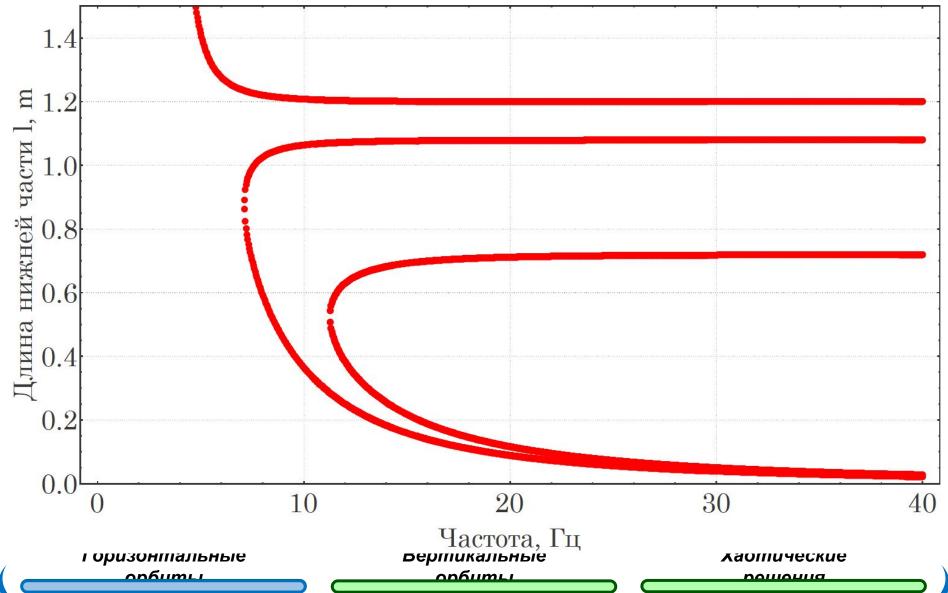
Team 12
Ukraine

Хаотические

```
Friction.nb * - Wolfram Mathematica 11.3
File Edit Insert Format Cell Graphics Evaluation Palettes Window Help
         ln[*] := Solve \left[ \left\{ mg := N1 + N2, \ \mu 1 \ N1 - + N2 \left( \frac{L}{2} - x \right) \right. \\ \left. = \mu 2 \frac{N2 \ d}{2} + N1 \left( \frac{L}{2} + x \right) \right\}, \ \left\{ N1, \ N2 \right\} \right];
          ln[v] = \mu[v] := Tanh[v] (a + \alpha (v - Tanh[v] v0)^{2})
                            \mu 1[v] := \mu[\omega r - v]
                            \mu 2[v_] := \mu[\omega r + v]
                           \mbox{N2[$t_{-}$]} := \frac{\mbox{mg} \mbox{($L+2\,x[$t$]} - \mbox{d}\,\mu\mathbf{1}[$x'[$t$]])}{2\,\mbox{L} - \mbox{d}\,\mu\mathbf{1}[$x'[$t$]] - \mbox{d}\,\mu\mathbf{2}[$x'[$t$]])};
                             eq = mx''[t] - \mu 1[x'[t]] N1[t] + \mu 2[x'[t]] N2[t];
          m[\cdot] = param = \{a \rightarrow 0.7, \alpha \rightarrow 0.0003, v0 \rightarrow 60, L \rightarrow 0.075, d \rightarrow 0.01, \omega \rightarrow 120, r \rightarrow 0.06, m \rightarrow 0.1, g \rightarrow 9.81\};
          Im[v]= style = {AxesStyle → Directive[Gray, 10], PlotTheme → "Detailed", Frame → True, LabelStyle → Directive[43, FontFamily → "Century"],
                                       FrameStyle → Directive[Thickness[0.002], Darker[Darker[Gray]]], FrameTicksStyle → Directive[43, Darker[Darker[Gray]], FontFamily → "Century"],
                                       AspectRatio → —, ImageSize → {1280}};
           ln[\cdot] = s = NDSolve[\{eq = 0, x[0] = 0.1, x'[0] = 0\} /. param, x, \{t, 0, 300\}, PrecisionGoal -> 20]
        Out[o]= { { x → InterpolatingFunction [ □ | Domain: {{0., 300.}} } Output: scalar
          ln[x] = ListPlot\left[Table\left[\left\{t1, \left(x[t]^2 - (x'[t])^2 \left(\frac{x[t]}{x''[t]}\right)\right) / . s[[1]] / . t \rightarrow t1\right\}, \left\{t1, 0.53, 300, 0.6\right\}\right], Evaluate[style], Joined \rightarrow True, PlotStyle \rightarrow Directive[Red, Thickness[0.003]], P
                               PlotRange → {Automatic, {0, 1.6}}
```

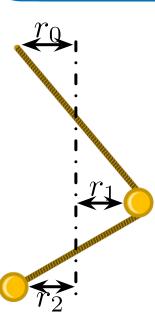
Вертикальные — орбиты

Team 13
Ukraine



Проверка на устойчивость

IYPT 2019 Team 14 Ukraine



Торизонтальные γ Чти $f(t) = l \sin \theta_1$ $r_2 = r_1 + l \sin \theta_2$

Вертикальные z_1 $z_2 = z_1 + l\cos\theta_2$

Кинетическая

$$\vec{W}_k = \frac{1}{2} \left(m\omega^2 r_1^2 + M\omega^2 r_2^2 \right)$$

Потенциальная

$$W_p^{ ext{He}} = g \left(m z_1 + M z_2 \right)$$

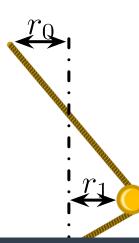
Пишем функцию Лагранжа для нашей системы

Горизонтальные

Вертикальные

Проверка на

IYPT 2019 Team 15 Ukraine



Торизонтальные γ **qmж**лhoнения $z=l)\sin heta_1$ $r_2 = r_1 + l \sin \theta_2$

Вертикальные zqmжлoНени \hbar : $\cos heta_1$ $z_2 = z_1 + l\cos\theta_2$

Кинетическая

$$W_{k}^{\mu} \stackrel{\text{регил:}}{=} \left(m\omega^{2}r_{1}^{2} + M\omega^{2}r_{2}^{2}\right) W_{p}^{\mu} \stackrel{\text{регил:}}{=} g\left(mz_{1} + Mz_{2}\right)$$

Потенциальная

Условия равновесия

систрия:
$$\frac{\partial E}{\partial x} = 0$$
 $\frac{\partial E}{\partial y} = 0$

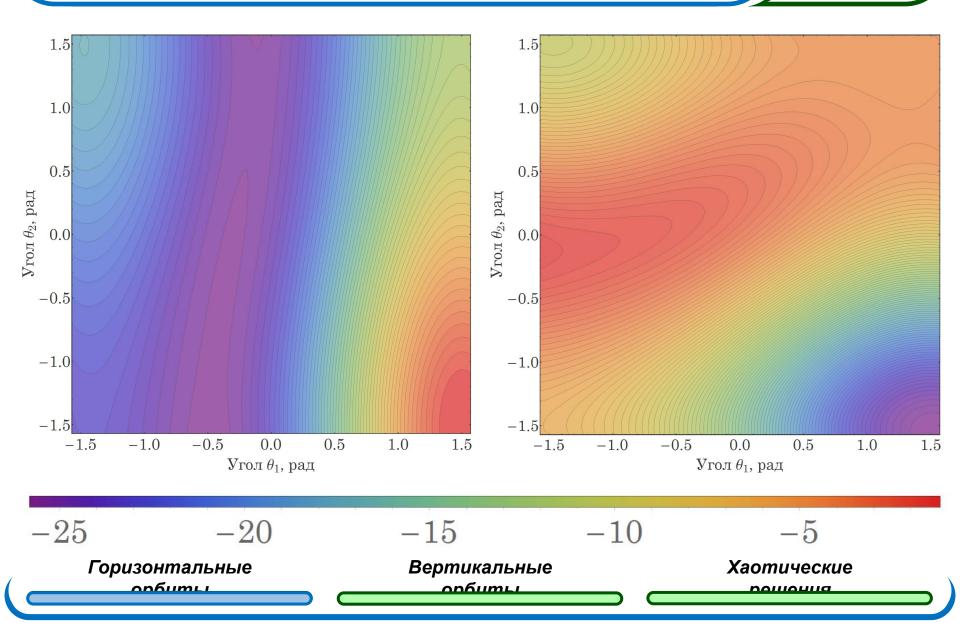
Выпуклость энергии вблизи точки равновесия говорит об устойчивости данного положения

энергия:
$$U_{eff}=E$$

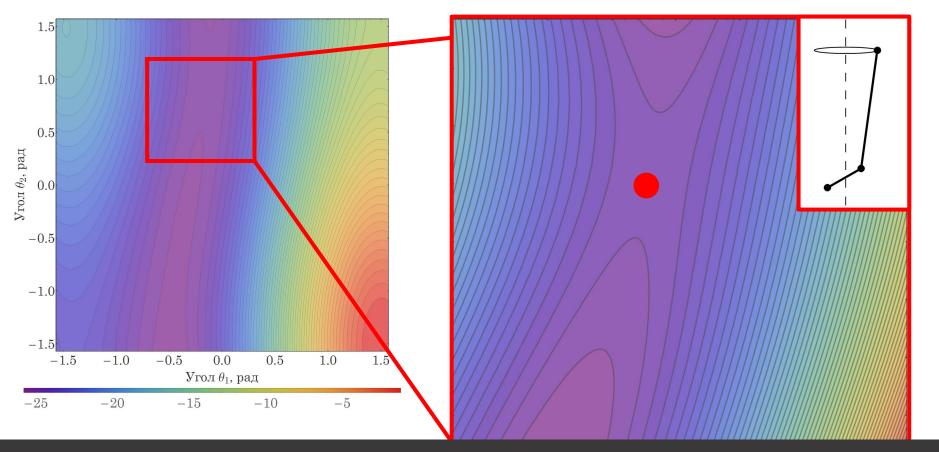
Горизонтальные

Вертикальные

IYPT 2019 Team 16 Ukraine



IYPT 2019 Team 17 Ukraine

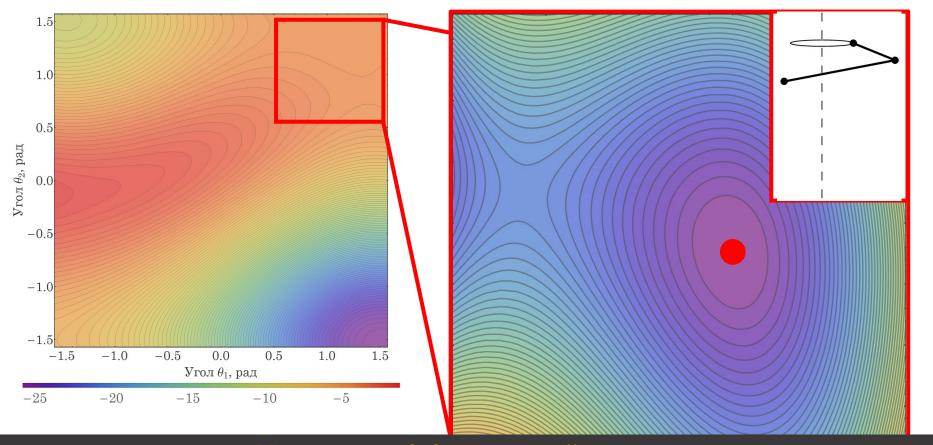


Седловая точка

Положение неустойчиво

Горизонтальные Орбиты Вертикальные

IYPT 2019
Team 18
Ukraine

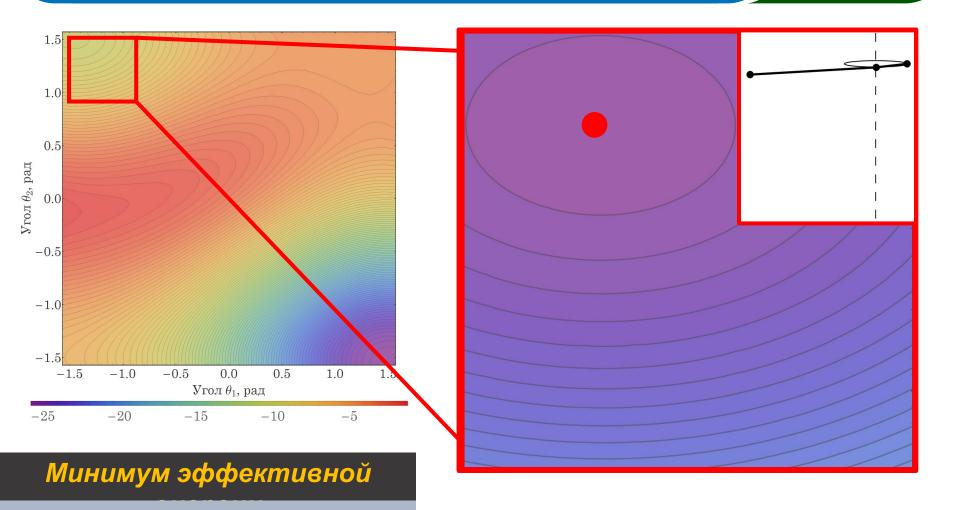


Минимум эффективной энергии

Положение устойчиво

Горизонтальные Орбиты Вертикальные

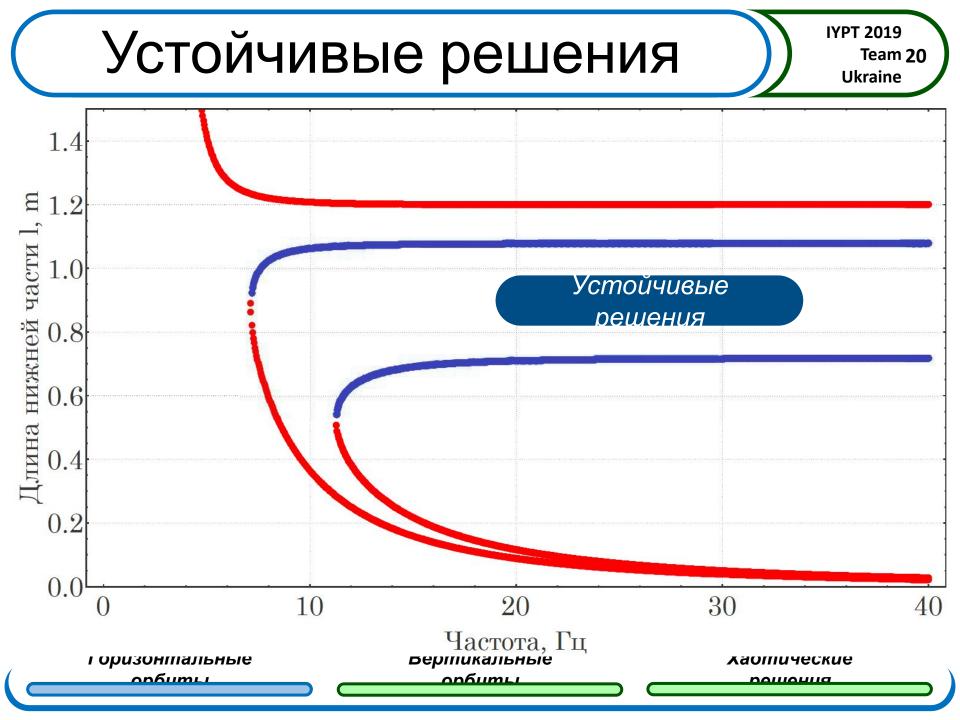
Team 19
Ukraine



Положение устойчиво

Горизонтальные

Вертикальные <u>орбиты</u>



Сила трения в системе

IYPT 2019
Team 21
Ukraine

Уравнения движения

$$\begin{cases}
-T_1 \sin \theta_1 - T_2 \sin \theta_2 = -m\omega^2 r_1 \\
T_1 \cos \theta_1 - T_2 \cos \theta_2 - mg = 0 \\
T_2 \sin \theta_2 = M\omega^2 r_2 \\
T_2 \cos \theta_2 - Mg = 0
\end{cases}$$

Переменные системы

 $\begin{bmatrix} T_1, T_2 \\ l, r_1, r_2, \theta_1, \theta_2 \end{bmatrix}$

Решаем систему в приближении отсутствия сил трения, тогда силы натяжения нитей считаем

Геометрические

условия

$$\begin{cases} r_1 + r_0 = (L - l)\sin\theta_1 \\ r_1 + r_2 = l\sin\theta_2 \end{cases}$$

Горизонтальные

Вертикальные

 $T_1 = T_1 e^{-\mu(\pi - \theta_1 - \theta_2)}$

Хаотические

пошонна

Решение с учётом сил трения

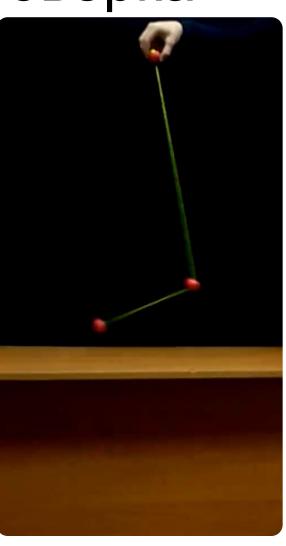
IYPT 2019 Team 22 Ukraine

Горизонтальные

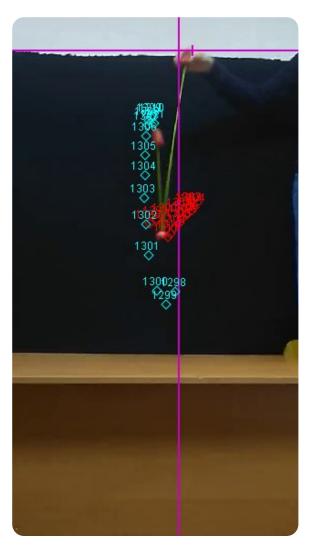
Экспериментальная

IYPT 2019 Team 23 Ukraine

Горизонтальные



Вертикальные



Хаотические

Экспериментальная проверка

IYPT 2019 Team 24 Ukraine

Горизонтальные

Вертикальные

IYPT 2019 Team 25 Ukraine

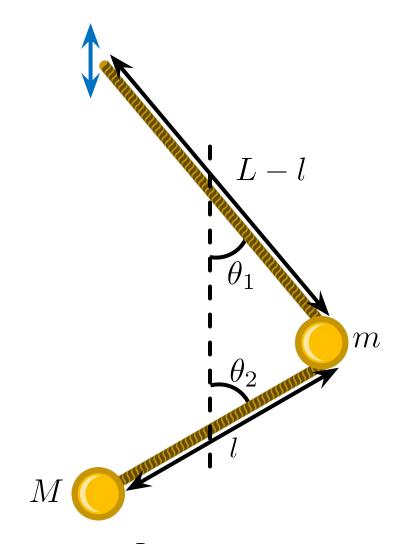
Вертикальные орбиты

Горизонтальные

Вертикальные

Геометрия системы

Team 26
Ukraine

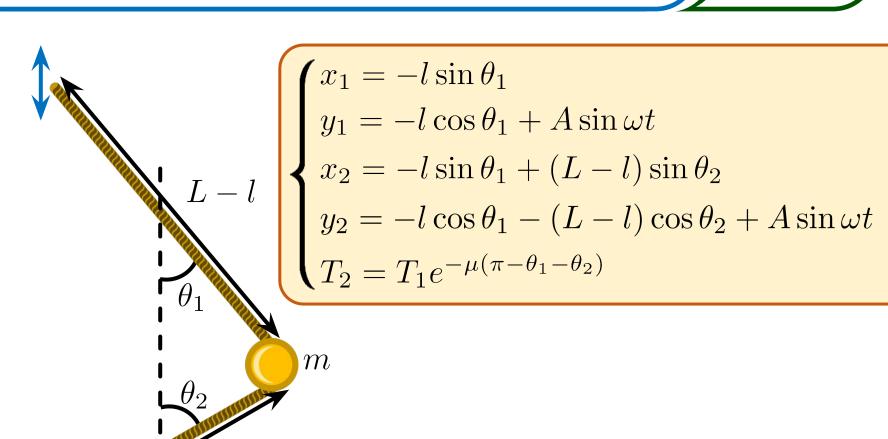


Горизонтальные

Вертикальные орбиты

Геометрия системы

IYPT 2019 Team 27 Ukraine



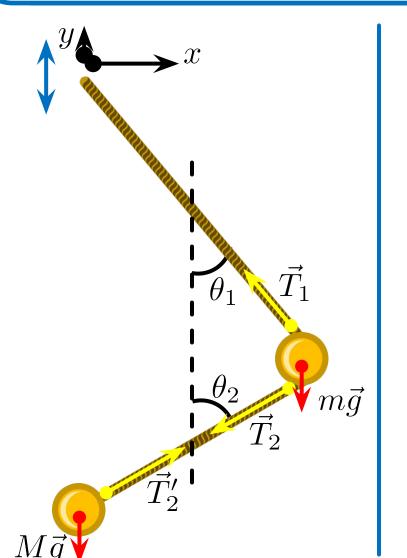
Горизонтальные

M

Вертикальные

Уравнения движения

IYPT 2019
Team 28
Ukraine



Ровизонтальные

Второй закон Ньютона для обоих шариков

$$m\vec{g} + \vec{T}_1 + \vec{T}_2 = m\vec{a}_1$$
$$M\vec{g} + \vec{T}_2' = M\vec{a}_2$$

В проекциях на оси у и х

попучаем:

$$\begin{cases} m\ddot{x}_1 = T_1 \sin \theta_1 + T_2 \sin \theta_2 \\ m\ddot{y}_1 = T_1 \cos \theta_1 - T_2 \cos \theta_2 - mg \\ M\ddot{x}_2 = -T_2 \sin \theta_2 \\ M\ddot{y}_2 = T_2 \cos \theta_2 - Mg \end{cases}$$

Вертикальные

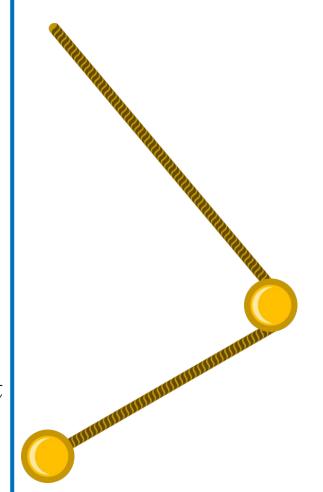
Хаотические

onfumei

Полная система уравнений

IYPT 2019 Team 29 Ukraine

 $Tm\ddot{x}_1 = T_1\sin\theta_1 + T_2\sin\theta_2$ $m\ddot{y}_1 = T_1\cos\theta_1 - T_2\cos\theta_2 - mg$ $M\ddot{x}_2 = -T_2\sin\theta_2$ $M\ddot{y}_2 = T_2 \cos \theta_2 - Mg$ $x_1 = -l\sin\theta_1$ $y_1 = -l\cos\theta_1 + A\sin\omega t$ $x_2 = -l\sin\theta_1 + (L-l)\sin\theta_2$ $y_2 = -l\cos\theta_1 - (L - l)\cos\theta_2 + A\sin\omega t$ $T_2 = T_1 e^{-\mu(\pi - \theta_1 - \theta_2)}$



Горизонтальные

Вертикальные

Численное решение

Team 30
Ukraine

Горизонтальные

Вертикальные

Экспериментальная проверка

IYPT 2019 Team 31 Ukraine

Горизонтальные

Вертикальные

Хаотические

пошонна

IYPT 2019 Team 32 Ukraine

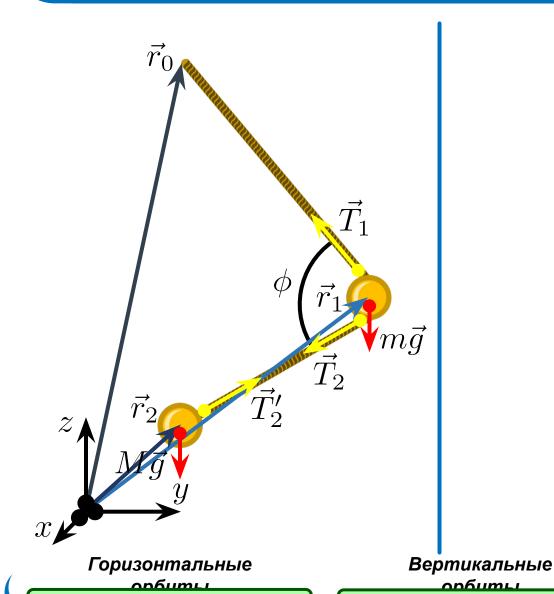
Хаотические решения

Горизонтальные

Вертикальные

Хаотические движения

IYPT 2019 Team 33 Ukraine



Что-то теоретическое...

IYPT 2019 Team 34 Ukraine

Горизонтальные

Вертикальные

Что-то экспериментальное...

IYPT 2019 Team 35 Ukraine

Горизонтальные

Вертикальные

IYPT 2019 Team 36 Ukraine

Наденьте шарик со сквозным отверстием на нить так, чтобы он мог свободно двигаться вдоль нити. На конце нити закрепите другой шарик. Если периодически двигать свободный конец нити, то можно наблюдать сложное движение обоих шаров. Исследуйте явление.

Вертикальные орбиты

- Качественное и теоретическое изучение динамики движения системы
- Изучение устойчивости решений
- Экспериментальное изучение

Результаты и

PLIPOPLI

IYPT 2019 Team 37 Ukraine

Наденьте шарик со сквозным отверстием на нить так, чтобы он мог свободно двигаться вдоль нити. На конце нити закрепите другой шарик. Если периодически двигать свободный конец нити, то можно наблюдать сложное движение обоих шаров. Исследуйте явление.

Горизонтальные орбиты

- Теоретическое изучение динамики движения системы
- Экспериментальная проверка решений

Результаты и

PLIDUGLI

Team 38
Ukraine

Наденьте шарик со сквозным отверстием на нить так, чтобы он мог свободно двигаться вдоль нити. На конце нити закрепите другой шарик. Если периодически двигать свободный конец нити, то можно наблюдать сложное движение обоих шаров. Исследуйте явление.

Хаотические решения

• Универсальная теоретическая модель для численной симуляции движения системы

Докладчик - Хорошко Илья

(Спасибо за внимание!

