

● Электролиз – это окислительно восстановительный процесс, протекающий на электродах при прохождении электрического тока через расплав или раствор электролита.

Катионы **(+)** → катод **(-)**

Анионы (-) → Анод (+)

Электроды

Активные (только анод: материал анода окисляется) Например медный

Инертные (не окисляются, например: графит, уголь, платина)

2 вида электролиза:

- электролизрасплавов
- электролизрастворов

Электролиз расплава Хлорида натрия $NaCl \rightarrow Na^+ + Cl^-$

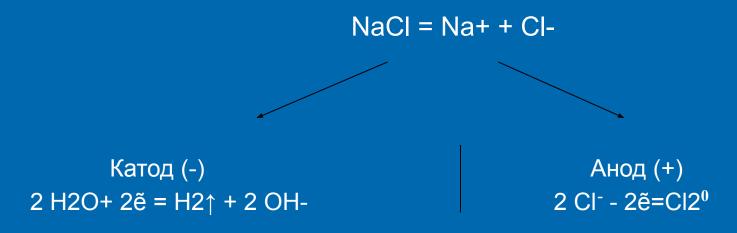
$$K$$
 (-)Na $^+$ + $\tilde{e} \rightarrow Na$ 2 восстановление A (+) $2Cl$ - $-2\tilde{e} \rightarrow Cl {^0}_2 \uparrow |$ 1 окисление

$$2 \text{ Na}^+ + 2 \text{Cl} - 2 \text{Na}^0 + \text{Cl}^0 \uparrow$$

Электролиз растворов электролитов

Правила восстановления катионов на катоде:

Li K Ca Na Mg Al Li + K+ Ca2+ Na+ Mg2+ Al3+	Mn Zn Fe Ni Sn Pb Mn2+ Zn 2+ Fe2+ Ni2+ Sn2+Pb2+	Cu Hg Ag Pt Au Cu2+ Hg2+2 Ag+ Pt2+ Au3+
2 H ₂ O + 2 ẽ = H ₂ ↑ + 2 OH-	Mn++ n ẽ = M0 2H2O + 2ẽ=H2↑+2 OH-	M ⁿ⁺ + n ẽ = M ⁰
Активные металлы - не восстанавливаются, восстанавливается вода	Восстанавливаются катионы металлов и вода	Неактивные металлы - восстанавливаются катионы металлов


Правила восстановления анионов на аноде:

а) если анод не растворимый Cl⁻, Br⁻, S⁻, I ⁻... Бескислородные (кроме F) анионы окисляются

Анион $^{n-}$ - n $\tilde{e} \rightarrow$ Анион 0

- \square SO₄²⁻; NO₃⁻; PO₄³⁻; CO₃²⁻
- □ (кислородсодержащие анионы не окисляются, окисляется вода.)
- □ В кислотной и нейтральной среде:
- □ 2H₂O 4 ẽ =O₂↑ +4H⁻
- □ В щелочной сфере:
- □ 4 OH - 4 e = O₂↑ +4H +

Электролиз раствора хлорида натрия, если анод нерастворимый

Суммарное ионное уравнение 2 H2O+2 Cl $^-$ = H2 \uparrow + Cl2 \uparrow + 2OH $^-$

$$2NaCl + 2 H2O$$
 электролиз $H2\uparrow + Cl20 \uparrow + 2NaOH$

Электролиз раствора сульфата меди (II) на нерастворимом аноде:

$$CuSO_4 = Cu^{2+} + SO_4^{2-}$$

Катод (-)

 $Cu_2 + +2\tilde{e} = Cu_0$

Анод (+)

2 H₂O - 4ẽ = O₂↑+ 4 H+

Cu²⁺ +2
$$\tilde{e}$$
 = Cu⁰ 2
2 H₂O - 4 \tilde{e} = O2 \uparrow + 4 H+ 1

Суммарное молекулярное уравнение: 2 CuSO₄ + 2 H₂O — электролиз 2 Cu+ O₂+ 2 H₂SO₄

Электролиз раствора гидроксида калия на нерастворимом аноде:

$$KOH = K + OH$$

ионы К+ не восстанавливаются, остаются в растворе

 $2 \text{ H}_2\text{O} + 2 \tilde{\text{e}} = \text{H}_2\uparrow + 2\text{OH}^-$

Анод (+)

 $4OH^{-} - 4 \tilde{e} = O_{2} + 2 H_{2}O$

2 H₂O+ 2
$$\tilde{e}$$
 = H₂↑+ 2OH⁻ 2
4OH⁻ 4 \tilde{e} = O₂↑+2 H₂O 1

$$2 \text{ H}_2\text{O} + 4\text{OH}^- = 2\text{H}_2\uparrow + 4\text{OH}^- + \text{O}_2\uparrow + 2\text{ H}_2\text{O}$$

Суммарное молекулярное уравнение:

2 H₂O электролиз 2H₂↑+ O₂↑

б) Если анод РАСТВОРИМЫЙ, то окисляется металл анода, несмотря на природу аниона:

Схема электролиза раствора сульфата меди CuSO₄, если анод медный:

 $CuSO_4 = Cu^{2+} + SO_4^{2-}$

АНОД: (+) Cu²⁺ -2 \tilde{e} = Cu⁰

КАТОД (-): $Cu^{2+} + 2\tilde{e} = Cu^0$

Суммарное уравнение электролиза с растворимым анодом написать нельзя.