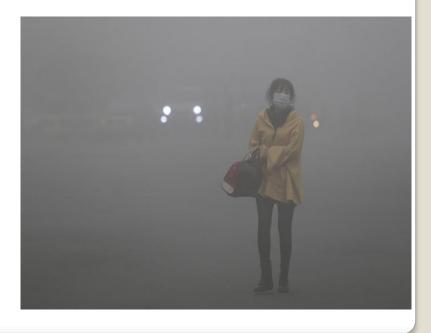

Презентация на тему:

- 1)Источники техногенных воздействий, загрязняющие вещества. Основные загрязнители нефтяного производства.
 - 2) Система государственного экологического мониторинга

Ромохов К.С.

1)Источники техногенных воздействий, загрязняющие вещества. Основные загрязнители нефтяного производства.

- Продукты химических и близких к ним предприятий
- Металлургия
- 🗖 Добыча нефти и газа
- □ Металлообрабатывающая промышленность
- Непроизводственные отходы
- Электротехническое и электронное оборудование
- Транспорт
- □ Целлюлозо-бумажное производство
- Прочее


По физико-химическим параметрам все выбросы делятся на

- механические,
- физические (энергетические),
- химические
- биологические.

Механические	Химические	Физические	Биологические
		(энергетические)	
Пылевые частицы	Газообразные, жидкие и	Тепло, шум, вибрации,	Виды организмов,
в атмосфере;	твердые химические	ультразвук, видимые	появившиеся при
твердые частицы,	соединения и элементы,	инфракрасные и	участии человека и
различные	вступающие в реакцию с	ультрафиолетовые части	наносящие вред ему
предметы в воде и	компонентами ОС.	спектра,	самому и живой природе
почве		электромагнитные поля,	
		ионизирующие	
		излучения	

- •Углекислый газ (CO 2) образуется в результате сжигания ископаемых видов топлива. Ведет к «парниковому эффекту». В результате неполного сгорания топлива выделяется также монооксид углерода CO токсичный газ.
- •Диоксид серы (сернистый ангидрид) SO 2 один из наиболее токсичных газообразных выбросов энергоустановок. Влияет на окисление, разрушает материалы, вредно влияет на здоровье человека.
- •Оксиды азота (NO x) образуются при сжигании любого из ископаемых видов топлива, содержащих азотные соединения. Оксиды азота вредно влияют на здоровье человека, способствуют образованию парникового эффекта и разрушению озонового слоя.
- •Метан (СН 4) образуется в результате разложения органических веществ в процессе нефте и газодобычи, газораспределения и сжигания биомассы. Метан также значительно способствует возникновению парникового эффекта.

Образующиеся соединения оказывают вредное воздействие не только на здоровье человека, но и на ОС, что может привести к еще более печальным последствиям для людей

Одна из множества других проблем - уменьшение толщины озонового слоя, образование «озоновых дыр», в результате чего резко увеличивается интенсивность поступающего к поверхности Земли космического излучения.

Это может привести к необратимым отрицательным последствиям в виде мутации живых организмов, к канцерогенным заболеваниям людей, снижению рождаемости населения и ухудшению урожайности сельскохозяйственных культур.

Источники разделяются на три группы:

) фоновые постоянные утечки;

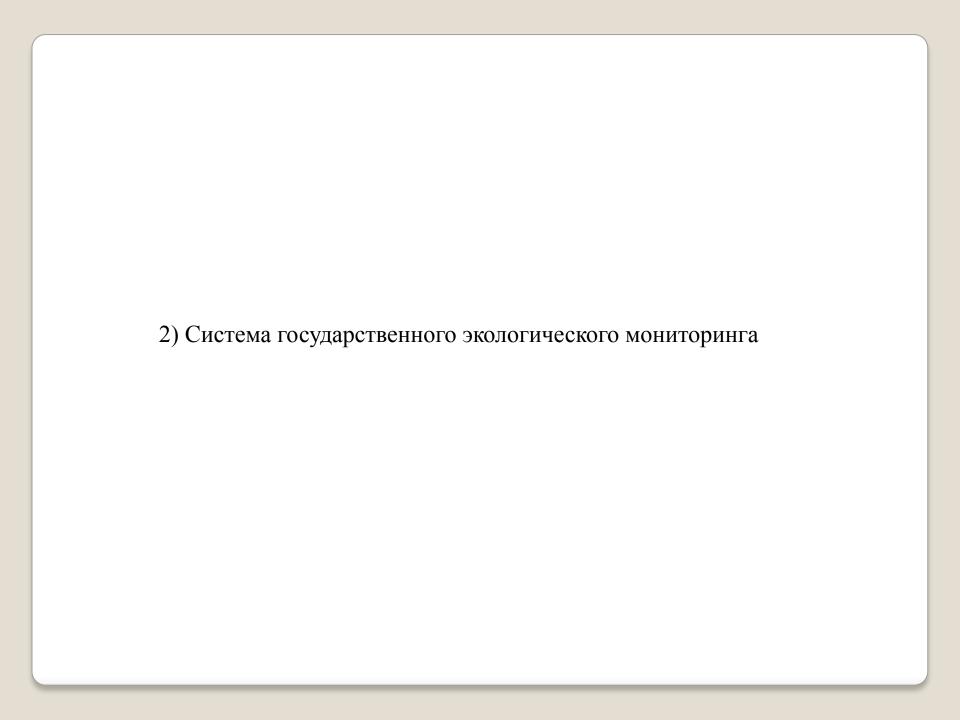
технически неизбежные эпизодические утечки; технологически неизбежные постоянные выбросы.

Выбросы вредных веществ разделяются на организованные и неорганизованные.

- 1) Организованные отводятся от мест выделения и улавливания с помощью специальных установок,
- 2) Неорганизованные выбросы, возникающие за счет негерметичности технологического оборудования, резервуаров и т.д.

Среди загрязнителей наибольшую опасность представляют жидкие и полужидкие, которые в силу своей подвижности обладают высокой аккумулирующей способностью, что может приводить не только к стойкому загрязнению объектов ОС, но и к нарушению экологического равновесия в местах их попадания.

К наиболее распространенным загрязнителям атмосферы при добыче, подготовке, транспортировке и переработке нефти и газа, а также при их сгорании относятся


- •сернистый ангидрид,
- •сероводород,
- •окислы азота,
- •углеводороды
- •механические взвеси.

Наиболее опасными составляющими продукции месторождений нефти и газа являются сероводород и углекислота, содержание которых может доходить до 40%

Из двух кислых газов большие проблемы создает сероводород, который является отравляющим веществом для персонала, агрессивен по отношению к буровому оборудованию, промывочным жидкостям и тампонажным материалам.

Наиболее опасной, с точки зрения увеличения агрессивности добываемой продукции скважин, является соляная кислота, при взаимодействии которой с карбонатными пластами выделяется углекислый газ.

Действует от <u>Федерального закона от 10.01.2002 N 7-Ф3 (ред. от 29.07.2018) "Об охране окружающей среды"</u>

Статья 63.1. Единая система государственного экологического мониторинга (государственного мониторинга окружающей среды)

(введена Федеральным законом от 21.11.2011 N 331-ФЗ)

- •Выбор объектов мониторинга осуществляется исходя из целей и задач, уровня организации, принятых проектных решений, характеристик источников и факторов воздействия и зон их влияния, географического положения территории, особенностей компонентов ОС и их экологического состояния, политики природопользования и нормативно-правовой базы
- •Приоритеты в выборе объектов и пунктов наблюдения определяются исходя из величины воздействия и его последствий. При этом учитывается не только степень отклонения от нормы, но и экологическая и социально-хозяйственная оценка значимости того либо иного компонента окружающей среды.
- •Значимые воздействия должны выявляться на всех этапах освоения и развития НГК на основе анализа характеристик источников воздействия.
- В качестве приоритетных объектов мониторинга выделяются те компоненты и элементы ОС, на которые существующее или планируемое воздействие НГК оказывает или может оказать наиболее значимое влияние.

- •Территориальные системы экологического мониторинга организуются в субъектах Федерации и являются основными системообразующими элементами ЕГСЭМ (территориальными подсистемами ЕГСЭМ).
- Как и ЕГСЭМ в целом, территориальные подсистемы формируются на основе базовых и специализированных подсистем при участии систем обеспечения соответствующего уровня.
- •Системы мониторинга источника воздействий создаются за счет средств субъекта хозяйственной деятельности, который обеспечивает их регламентное функционирование.

На федеральном уровне ЕГСЭМ выполняет следующие основные функции:

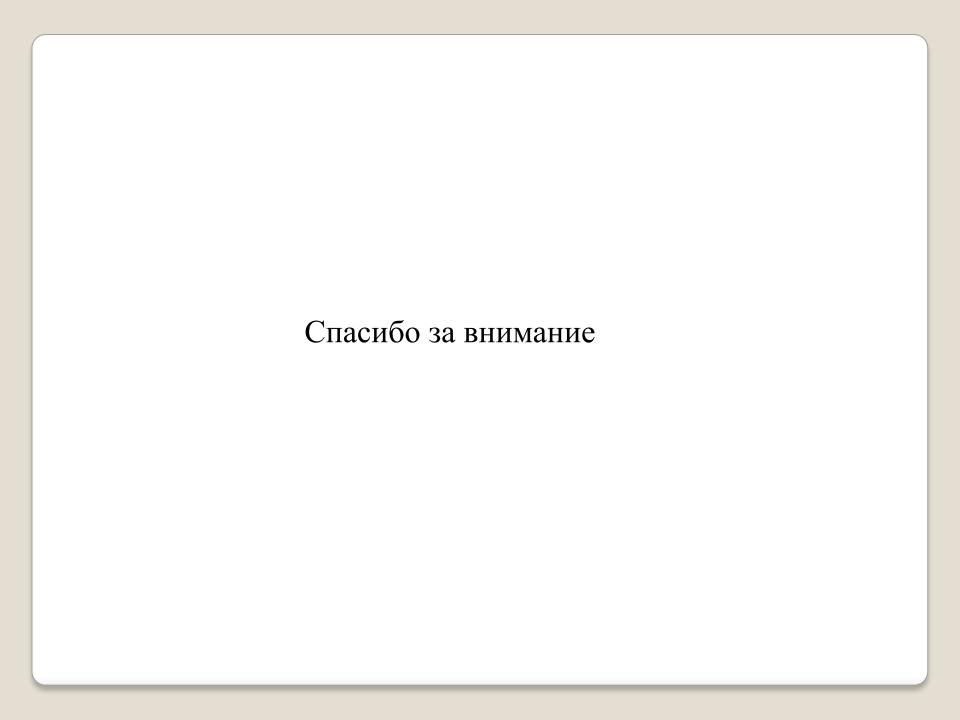
- обобщение информации, получаемой на территориальном или региональном уровнях;
- обеспечение требуемого качества данных, получаемых на всех уровнях ЕГСЭМ;
- информационное обеспечение управления в области охраны окружающей природной среды и экологической безопасности;
- информирование населения и общественности России об основных показателях, характеризующих экологическую обстановку на территории страны, и крупномасштабных тенденциях ее изменения;
- обеспечение функционирования подсистем экологического мониторинга, имеющих федеральное значение, а также специальных систем мониторинга, не имеющих территориального и регионального уровней;
- обеспечение участия Российской Федерации в международных, в том числе глобальных, системах экологического мониторинга.

Обмен данными между информационными центрами подсистем ЕГСЭМ осуществляется на принципе бесплатного доступа к данным мониторинга, полученным за счет бюджетных средств.

Объекты	Метод изме-	Опреде-	Диапа-	Граница	Наимено-
анализа	рения	ляемый	зон из-	погрешно-	вание ме-
	2000	компо-	мерения,	сти	тода
	g	нент	мг/дм ³	(p=0.95)	
Вода					
Питьевые,	ФЛ	ΗП	0,005 -	± 65 %	МУК
поверхно-		(массо-	0,1	±50 %	4.1.068-96
стные,		вая кон-	0,1-0,5	±25 %	
подзем-		центра-	0,5-50		
ные		ция)			
Питьевые	Спектрофо-	Нелету-	0,05 -	± 50%	ЦВ
	тометриче-	чий НП	0,1	$\pm40\%$	1.02.1B-
	ский метод с		0,1-0,5		94"A"

_		ский метод с		0,1 0,5		74 A
Ī		применени-			•	МВИ
		ем КХ				
	Природ-	ИКС	НΠ	0,05 -	±0,68%	ПНД
	ные,		(массо-	0,10	±0,24%	14.1:2.5-95
	сточные		вая кон-	0,10 -	±0,10%	
			центра-	1,0		
			ция)	1,0-25		
				25 - 50		
	Природ-	ФЛ	То же	0,005 -	±65%	ПНД Ф
	ные,			0,10	± 50%	14.1:2:4.35
	питьевые,			0,10 -	±25%	-95
	сточные			0,50		
				0,50-50		
	Природ-	КX	То же	0,02-2	±(0009+0,2	ПНД Ф
	ные,	КХ с грави-		N 40 000000	0)%	14.1:2.62-
	очищен-	тометриче-		0,3-0,9	405	96
	ные,	ским окон-		0,9	± 50%	ПНД Ф
	сточные	чанием		0,3-0,5	±25%	14.1:2.116-
				0,5-30	± 50%	97
				1-00	±25%	
				300-30 1990 300	±10%	
				0,04 –	$\pm (0,01+0,1)$	
		ИК		2,0	9)%	РД
						52.24.4769
						55 MY

 $\Phi\Pi$ — флуориметрия; KX — колоночная хромотография; ΓX — газовая хромотография; UKC — инфракрасная спектрометрия;


Биоестирование

Основной принцип биологического тестирования сводится к оценке достоверных различий между опытом (среда, содержащая токсикант) и контролем (чистая вода) по какому-либо показательному параметру тестируемого объекта, указывающему на полное или частичное угнетение жизненных функций тест-организмов под влиянием испытуемой воды или индивидуальных токсикантов в определенных концентрациях.

В методах биотестирования с использованием:

- •Бактерий регистрируются интенсивность размножения клеток,
- •биолюминесценции активность окислительных ферментов бактерий активного ила.
- •плесневых грибов и актиномицетов регистрируется ростовая реакция тест-объектов.
- •простейших регистрируются интенсивность размножения, двигательная активность и морфологические изменения.

