

Преобразования СИГНАЛОВ И Вейвлетпреобразование

ЕРМОШИН ИВАН (10-2) КОВРИЖНЫХ ДМИТРИЙ (10-2) 2018 Вейвлет-преобразование.

$$CWT_{x}^{\psi}(\tau,s) = \Psi_{x}^{\psi}(\tau,s) = \frac{1}{\sqrt{|s|}} \int x(t) \psi^{*} \left(\frac{t-\tau}{s}\right) dt$$

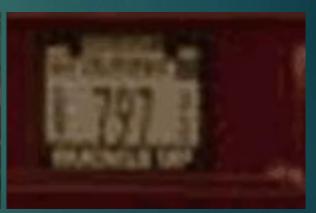
Позволяет получить частотно-временное представление сигнала и много всякой другой фигни.

Обработка экспериментальных данных.

Вейвлет-преобразование дает наиболее наглядную и информативную картину результатов эксперимента, позволяет очистить исходные данные от шумов и случайных искажений.

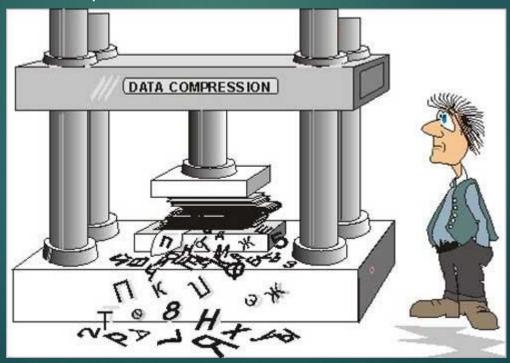
Обработка изображений.

Используя вейвлет-преобразование, мы можем сгладить или выделить некоторые детали изображения, выделить важные детали и даже повысить его качество!



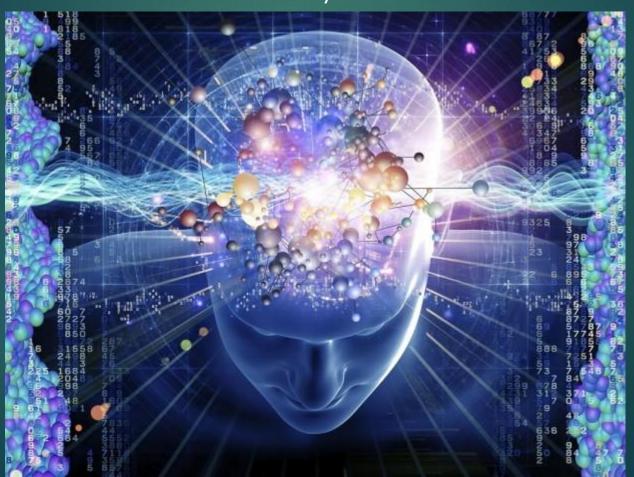
Сжатие данных

Для достаточно гладких данных полученные в результате преобразования детали в основном близки по величине к нулю и, следовательно, очень хорошо сжимаются обычными статистическими методами. Достаточно сказать, что изображение, обработанное вейвлетами, можно сжать в 3-10 раз без существенных потерь информации (а с допустимыми потерями – до 300 раз.



Нейросети и другие механизмы анализа данных.

Вейвлеты представляются весьма удобным и перспективным механизмом очистки и предварительной обработки данных для использования их в статистических и бизнесприложениях, системах искусственного интеллекта и т.п.



Системы передачи данных и цифровой обработки сигналов.

Характерные особенности поведения вейвлетпреобразования в частотно-временной области позволяют существенно расширить и дополнить возможности подобных систем.

Преобразование Фурье(ПФ)

Это преобразование позволяет получить амплитуду от частоты из амплитуды от времени и наоборот, но не более.

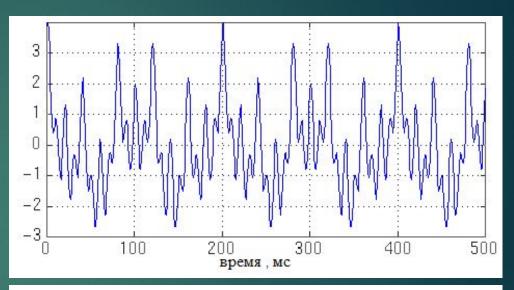
$$X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-i\omega t} dt$$

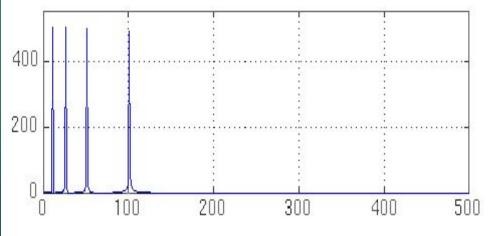
$$x(t) = \int_{-\infty}^{\infty} X(\omega) \cdot e^{i\omega t} d\omega$$

ПФ для стационарного сигнала

Стационарный сигнал

Преобразование Фурье для данного сигнала

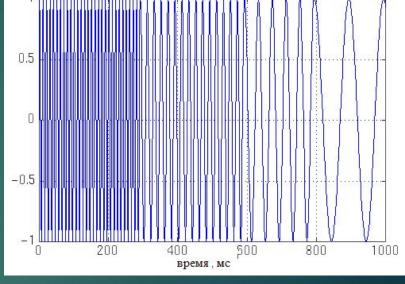




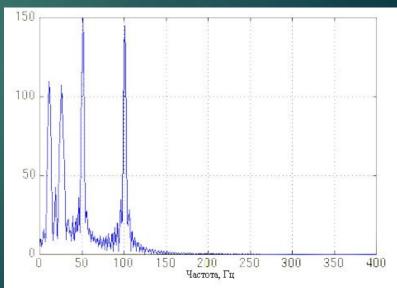
ПФ нестационарного сигнала

Кодзи ма не гений

Нестационарный сигнал



Преобразование Фурье Для данного сигнала



Оконное ПФ(ОПФ)

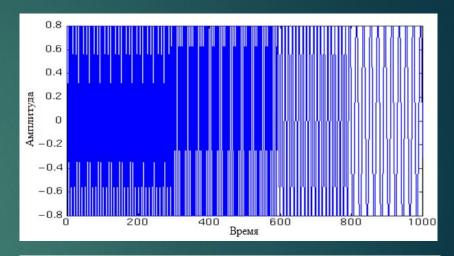
Ранее для нестационарных сигналов использовалось ОПФ.

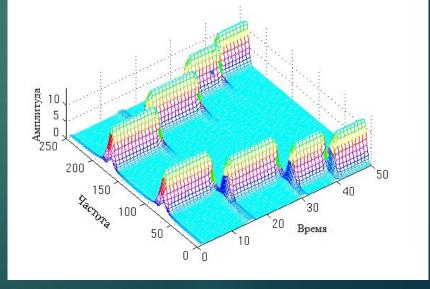
Здесь можно получить и частотно-временное представление сигнала.

ОПФ для нестационарного сигнала

Этот сигнал является стационарным каждые 250мс (на первом отрезке длинной 250мс он имеет частоту 300Гц, на втором — 200Гц, на третьем — 100Гц и на четвертом — 50Гц).

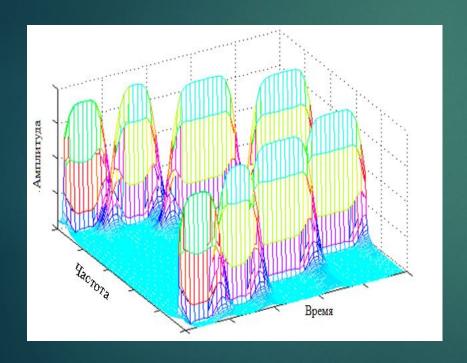
Трехмерный (время, частота и амплитуда) график оконного преобразования Фурье будет иметь следующий вид:

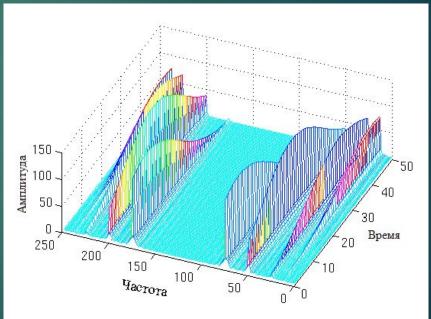




ОПФ для нестационарного сигнала

Тот же график, но с другим разрешением:





Вейвлет-преобразование.

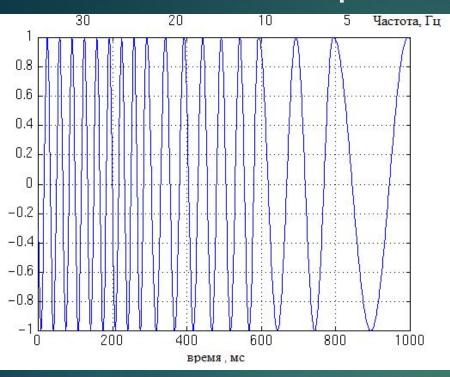
$$CWT_{x}^{\psi}(\tau,s) = \Psi_{x}^{\psi}(\tau,s) = \frac{1}{\sqrt{|s|}} \int x(t) \psi^{*}\left(\frac{t-\tau}{s}\right) dt$$

Материнских вейвлетов используется немного:

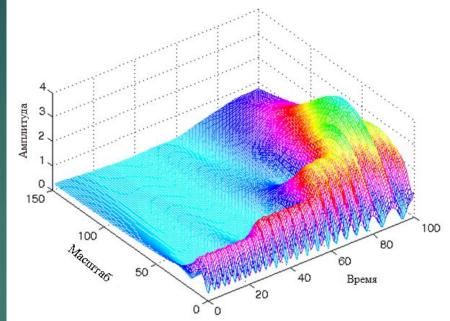
- •вейвлет Хаара
- •вейвлет Добеши
- •вейвлеты Гаусса
- •вейвлет Мейера
- •вейвлет_Морле
- •вейвлет Пауля
- •вейвлет «Мексиканская шляпа»
- •вейвлет Койфмана
- •вейвлет Шеннона

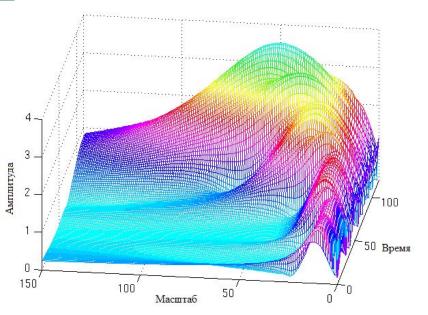
тау - сдвиг, s – масштаб(видно из форму, пси – материнский вейвлет

Вейвлет-преобразлвание



На рисунках хорошо видно, что полученное вейвлет-преобразование является более детализированным по времени в области высоких значений масштаба (низких частот) и менее детализирована в области низких значений масштаба (высоких частот).





Абелевскую премию получил французский математик Ив Мейер за теорию вейвлетов

В 1970-х Мейер занимался гармоническим анализом. Это раздел математического анализа, в котором изучаются свойства функций с помощью представления их

в виде рядов или интегралов Фурье.

Спасибо за внимание!

Источники:

Ну мне лень