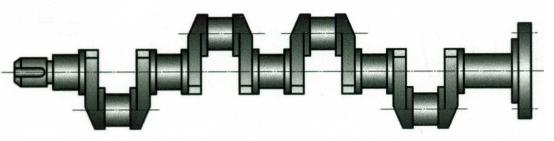
Валы и оси.

Валом называют деталь (как правило, гладкой или ступенчатой цилиндрической формы), предназначенную для поддержания установленных на ней шкивов, зубчатых колес, звездочек, катков и т. д., и для передачи вращающего момента. При работе вал испытывает изгиб и кручение, а в отдельных случаях помимо изгиба и кручения валы могут испытывать деформацию растяжения (сжатия). Некоторые валы не поддерживают вращающиеся детали и работают только на кручение. Осью называют деталь, предназначенную только для поддержания установленных на ней деталей. В отличие от вала ось не передает вращающего момента и работает только на изгиб. В машинах оси могут быть неподвижными или же могут вращаться вместе с сидящими на них деталями (подвижные оси).

Форма вала определяется распределением изгибающих и крутящих моментов по его длине. Правильно спроектированный вал представляет собой балку равного сопротивления. Валы и оси вращаются, а следовательно, испытывают знакопеременные нагрузки, напряжения и деформации (рис.3). Поэтому поломки валов и осей имеют усталостный характер.

КОНСТРУКЦИИ ВАЛОВ


Гладкий

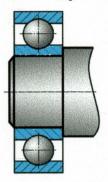
Ступенчатый

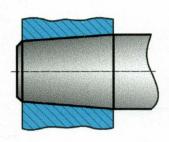
Коленчатый

Гибкий

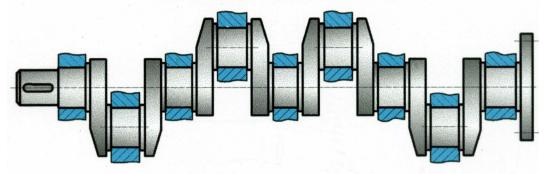
Кривошипные и коленчатые валы используют для преобразования возвратно-поступательного движения во вращательное (поршневые двигатели) или наоборот (компрессоры); гибкие для передачи вращающего момента между узлами машин, меняющими свое положение в работе (строительные механизмы, зубоврачебные машины и т. п.); телескопические — при необходимости осевого перемещения одного вала

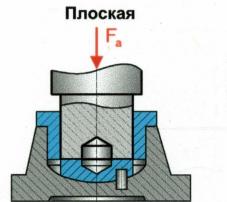
относительно другого.

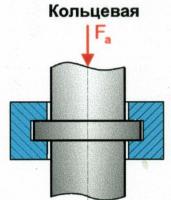

КОНСТРУКЦИИ ЦАПФ


Цапфа - опорная часть оси или вала

Шип - концевая опора

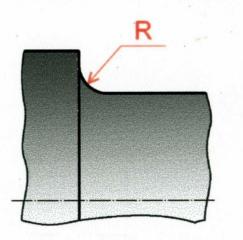

Шип цилиндрический

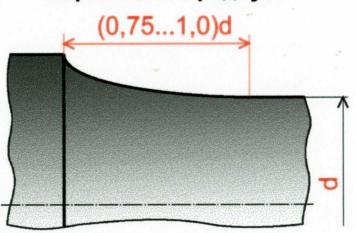


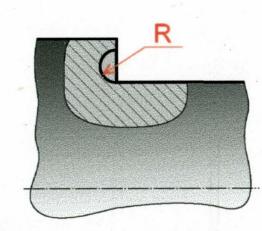


Шейка - промежуточная опора

Пята - опора, воспринимающая осевую нагрузку

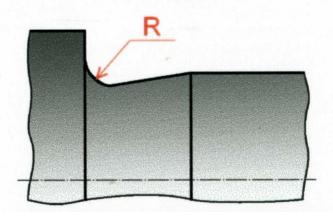

ПЕРЕХОДНЫЕ ПОВЕРХНОСТИ ВАЛОВ

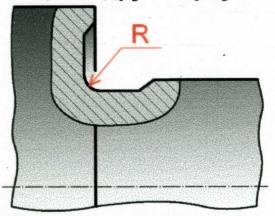

Галтели


Постоянного радиуса

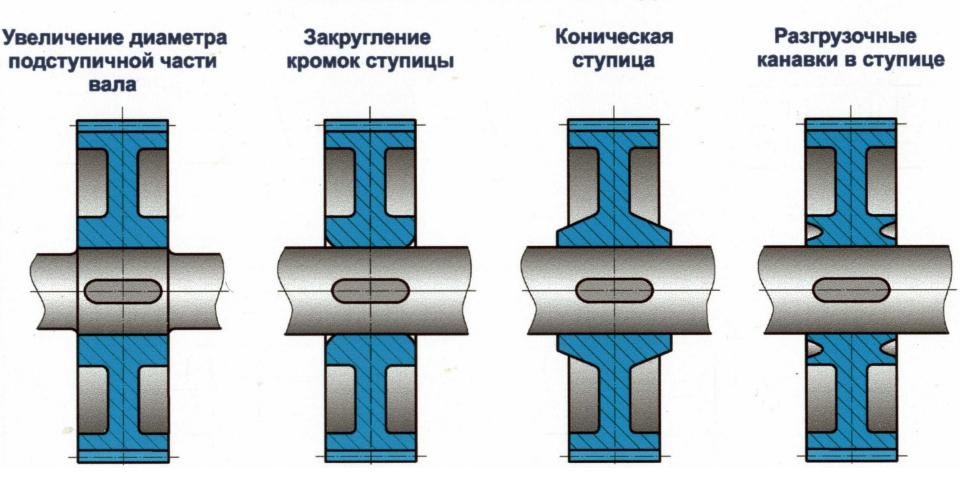
Переменного радиуса

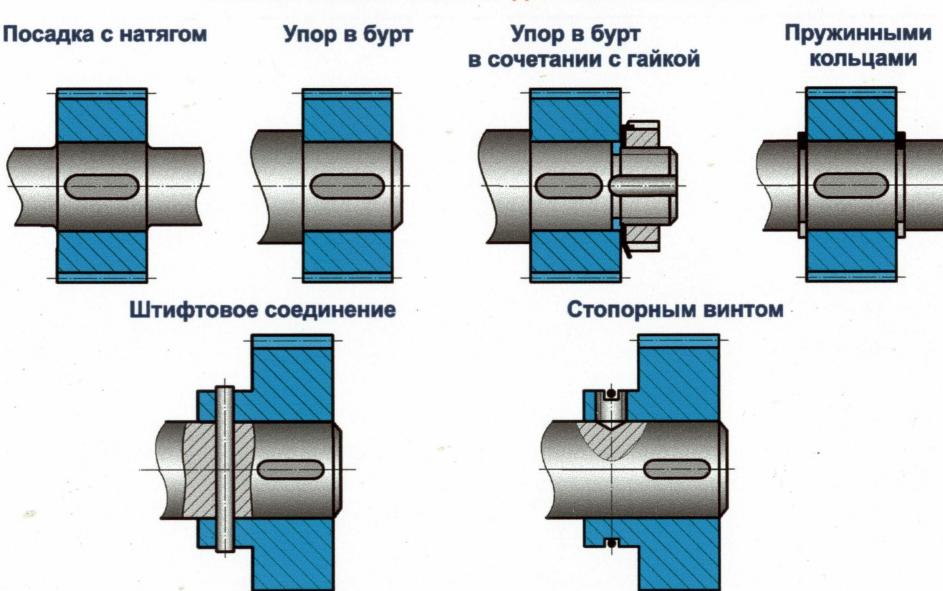
С поднутрением





Канавки для выхода шлифовального круга

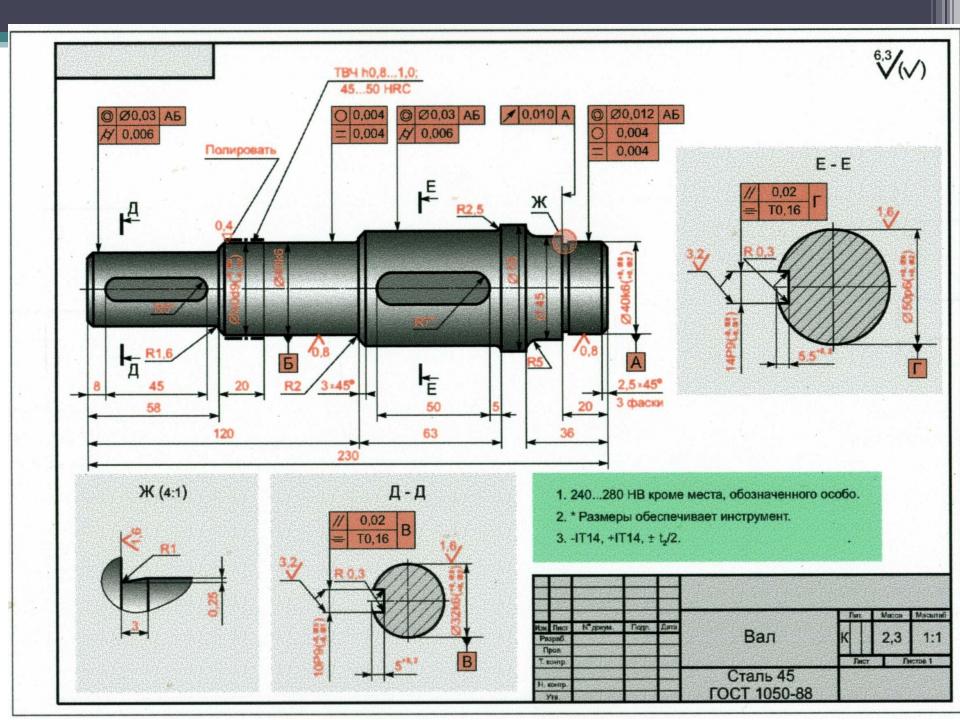

Шлифование по наружному цилиндру


Шлифование по наружному цилиндру и торцу

КОНСТРУКТИВНЫЕ СРЕДСТВА ПОВЫШЕНИЯ СОПРОТИВЛЕНИЯ ВАЛОВ УСТАЛОСТИ В МЕСТАХ ПОСАДКИ

ОСЕВОЕ ФИКСИРОВАНИЕ ДЕТАЛЕЙ НА ВАЛАХ

При разработке конструкции вала следует избегать:


- а) резких переходов сечений;
- б) канавок и малых радиусов скруглений;
- в) некруглых отверстий;
- г) грубой обработки поверхности.

Причины поломок валов и осей прослеживаются на всех этапах их "жизни".

- На стадии проектирования неверный выбор формы, неверная оценка концентраторов напряжений.
- На стадии изготовления надрезы, забоины, вмятины от небрежного обращения.
- На стадии эксплуатации неверная регулировка подшипниковых узлов. Для работоспособности вала или оси необходимо обеспечить:
- объёмную прочность (способность сопротивляться Мизг и Мкрут);
- поверхностную прочность (особенно в местах соединения с другими деталями);
- жёсткость на изгиб;
- крутильную жёсткость (особенно для длинных валов).

МАТЕРИАЛЫ И ТЕРМООБРАБОТКА ВАЛОВ И ОСЕЙ

Марки сталей	Вид термообработки	Область применения
Стали обыкновенного качества Ст 5, Ст 6 по ГОСТ 380-88	В состоянии поставки	Малонагруженные валы и оси без термообработки
Малоуглеродистые кон- струкционные стали: - качественные 15, 20 по ГОСТ 1050-88; - легированные 15X, 20X, 18XГТ, 12ХНЗА и др. по ГОСТ 4543-71.	Химико-термическое упрочнение с закалкой до твердости Н = 5863 HRC	Валы и оси при требовании высокой износостойкости: - опоры скольжения; - вал-шестерни.
Среднеуглеродистые кон- струкционные стали: - качественные 40, 45 и др. по ГОСТ 1050-88; - легированные 35X, 40X, 40XH и др. по ГОСТ 4543-71.	Улучшение до твердости Н = 250320 НВ	Высоконагруженные валы и оси

