Технология PDH

Лекция 3

Определение

• Технология PDH (плезиохронная цифровая иерархия) — это технология объединения и передачи цифровых потоков по линиям связи по принципу временного уплотнения с выравниванием скоростей передачи

(была разработана в 80-е годы прошлого века)

Введение

- Потребности людей в общении различны. Между разными городами требуется организовывать каналы разной скорости. Разные виды связи требуют разных скоростей (пр-р: речь 64 кб/с, видео от 8 Мб/с и выше).
- Вывод для вторичных сетей нужны каналы с **РАЗНЫМИ** скоростями.
- При этом логично, чтобы эти скорости были как-то **СТАНДАРТИЗОВАНЫ** Это удобно и производителям и потребителям услуг связи. Оборудование выпускаются в разных странах. Единые стандарты в области создания аппаратуры связи утверждаетМСЭ (международный союз электросвязи) МСЭ Он рекомендует строить сети по иерархическому принципу.

элементарный блок в иерархии PDH - ОЦК

• Основной цифровой канал телефонной сети — 64000 бит/с. Образуется из следующих соображений. Диапазон частот, в который помещается голос человека, составляет 300—3400 Гц. Для дискретизации по теореме Котельникова необходимо удвоить частоту 3400 Гц, получаем 6800 Гц. На практике частоту дискретизации установили 8000 Гц. В канал передаётся не сам отсчёт (величина напряжения), а двоичная кодовая комбинация, обозначающая его номер. Способ получил название ИКМ. Кодовая комбинация состоит из 8 разрядов. В итоге получается 8000 × 8 = 64000 бит/с. Канал используется как основной в плезиохронной цифровой иерархии.

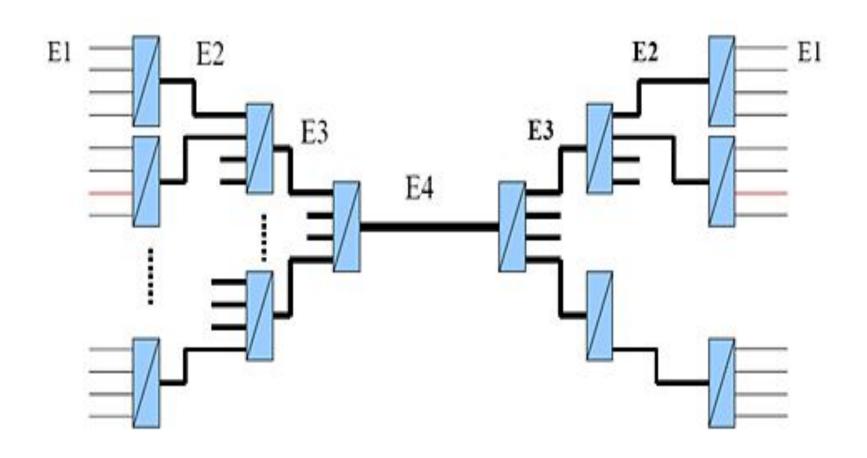
Основные принципы

- В технологии PDH в качестве входного используется сигнал (ОЦК), а на выходе формируется поток данных со скоростями n × 64 кбит/с. К группе ОЦК, несущих полезную нагрузку, добавляются служебные группы бит, необходимые для осуществления процедур синхронизации и фазирования, сигнализации, контроля ошибок (CRC), в результате чего группа приобретает форму цикла.
- В начале 80-х годов было разработано 3 таких системы (в Европе, Северной Америке и Японии). Несмотря на одинаковые принципы, в системах использовались различные коэффициенты мультиплексирования на разных уровнях иерархий. Описание стыков этих интерфейсов и уровней мультиплексирования дано в рекомендации G.703.

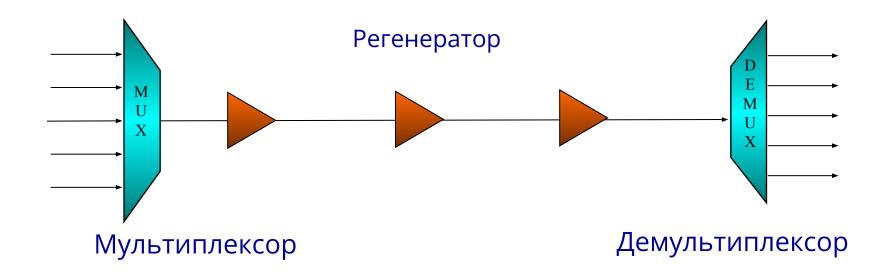
Принцип организации

Возможности цифровой системы передачи оценивают к-вом каналов ОЦК. (Например система ИКМ-30 организует из 30 каналов ОЦК один канал 2Мб/с (2048кб/с))

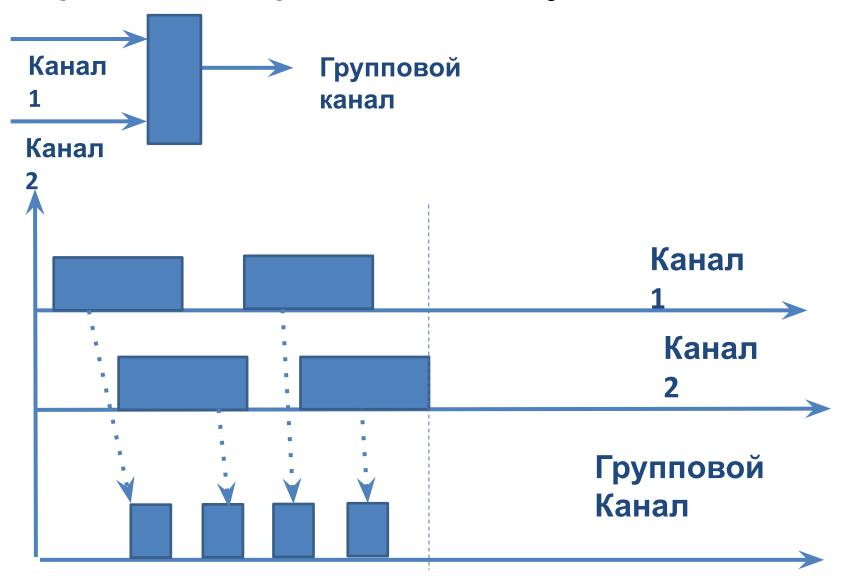
ИКМ-120 -> 4*2 Мб/с

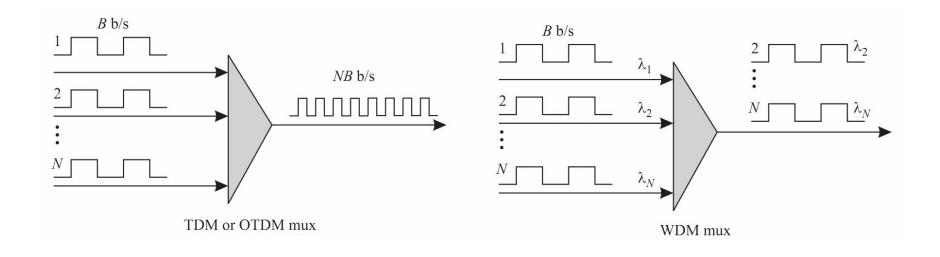

ИКМ-480 -> 4*8 Мб/с

ИКМ-1920 -> 4*34 Мб/с


Скорости передачи PDH

Америка				Европа (стандарт ССІТТ)			
Обору- дование	Количество голосовых каналов	Количество каналов предыдущего уровня	Скорость, Мбит/с	Обору- дованне	Количество голосовых каналов	Количество каналов предыдущего уровня	Скорость, Мбит/с
	1	1	64 Кбит/с		1	1	64 Кбит/с
T1	24	24	1,544	E1	30	30	2,048
T2	96	4	6,312	E2	120	4	8,488
T3	672	7	44,736	E3	480	4	34,368
T4*	4032	6	274,176	E4*	1920	4	139,264

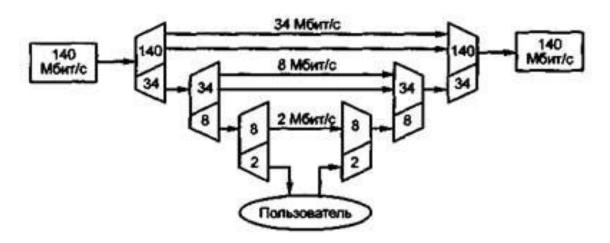

Иерархия PDH


Система передачи PDH

принцип временного уплотнения

Различие временного и частотного уплотнения

Согласование скоростей


- В PDH генераторы не синхронизированы друг с другом.
- Проблемы появляются если генераторы тактовой ч-ты (определяют запись и считывание) не стабильны.
- Местный г-р ускорился и считывание происходит быстрее, чем запись. Т.е появился пустой интервал куда не успела попасть инф-я из вх. Потока. Что делать заместить ее «пустым» стаффинг битом. А на другой конец послать сигнал об этом в служебном канале (чтобы его выбросили) это «положительное» выравнивание.
- Если местный г-р отстает то входная инф-я не успевает считываться и передаваться (переполняется буфер приема) т.е. нужно ее передать где-то (опять в каком-то служебном канале, и еще сообщить об этом (в другом канале) это отрицательное выравнивание.
- Таким образом, в случае необходимости выравнивания скоростей надо задействовать 3 сл. Канала: 1 сообщает о факте согласования «111», 2 что делать ликвидировать ложный импульс 111 или считывать пропущенный 000, 3 передает пропущенный импульс (0 или 1)

PDH – почему так называется?

- Плезиохронная (почти синхронная) генераторное оборудование приемника и передатчика не синхронизировано друг с другом
- Цифровая (передается цифровой сигнал)
- **Иерархия** (строится по иерархическому принципу)

Недостатки PDH

• **Негибкость** (крайняя сложность выделения потоков, необходимость полной разбивки)

Недостатки PDH

- Сложная система восстановления синхронизации низкоуровневых потоков при сбое синхр-ии группового сигнала
- Очень слабые механизмы контроля и управления системой (мало служебных каналов)
- Наличие **3 разных стандартов**. (европейский, американский, японский)