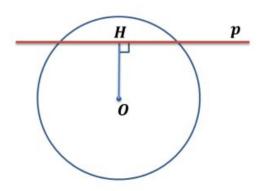
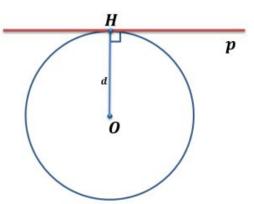
Касательная к окружности



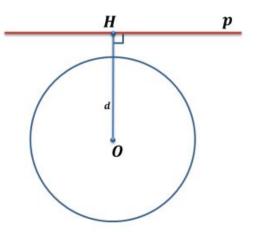
точка касания



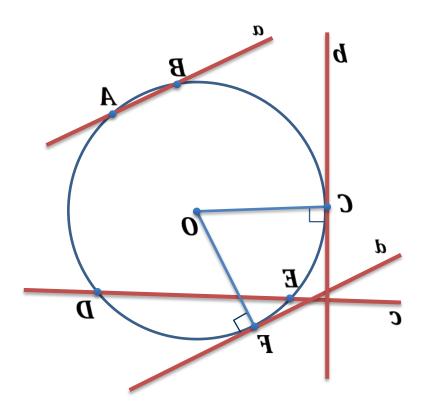
если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая и окружность имеют две общие точки. В таком случае, прямая называется секущей по отношению к окружности.



если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку. В таком случае, прямая называется касательной к окружности.

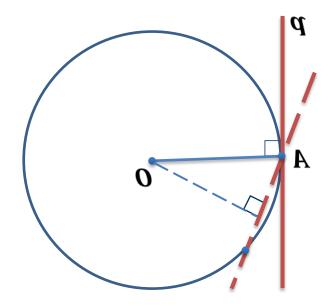


если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.



b — касательная, т. C — точка касания

d — касательная, т. F — точка касания

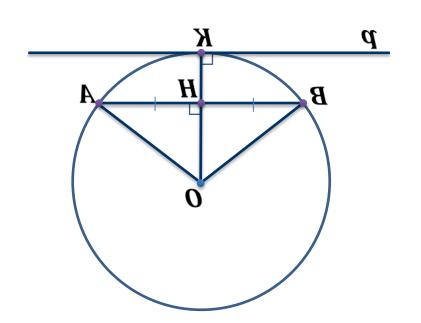


Теорема (свойство касательной). Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Задача. Радиус OK окружности с центром O делит хорду AB пополам. Доказать, что касательная, проведенная через точку K, параллельна хорде AB.

Доказательство.

$$\Delta AOB$$
 — равнобедренный OH — медиана и высота $OH \perp AB$ $OK \perp p$ $\Rightarrow AB \parallel p$





Теорема. Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Доказательство.

$$\Delta ABO$$
 и ΔACO :

$$\angle OBA = \angle OCA = 90^{\circ}$$

$$BO = OC$$
 – как радиусы

Следовательно,
$$AB = AC$$
, $\angle BAO = \angle CAO$

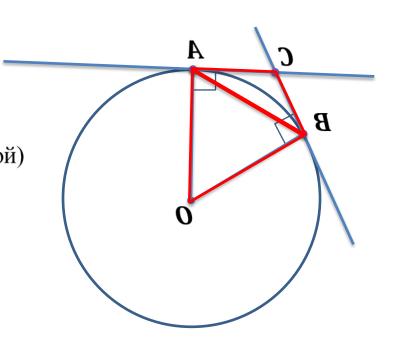
 $\Rightarrow \Delta ABO = \Delta ACO$

Задача. Через концы хорды AB, равной радиусу окружности, проведены две касательные, пересекающиеся в точке C. Найдите $\angle ACB$.

Решение.

$$\Delta OAB$$
 – равносторонний $\angle OAB = \angle ABO = \angle BOA = 60^\circ$ $AC = CB$ (по свойству отрезков касательной) $\angle OAC = \angle CBO = 90^\circ$ (по свойству касательной) $\angle CAB = \angle OAC - \angle OAB = 90^\circ - 60^\circ = 30^\circ$ $\angle CBA = \angle CAB = 30^\circ$ (по свойству углов равнобедренного треугольника) $\angle ACB = 180^\circ - 30^\circ - 30^\circ = 120^\circ$

Ответ: $\angle ACB = 120^{\circ}$.



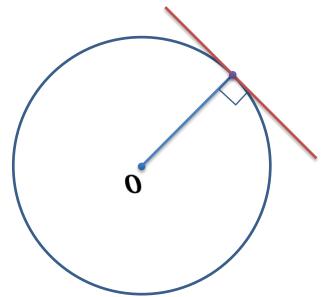
Теорема (признак касательной). Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.

Доказательство.

Данный радиус является перпендикуляром, проведенным из центра окружности к данной прямой.

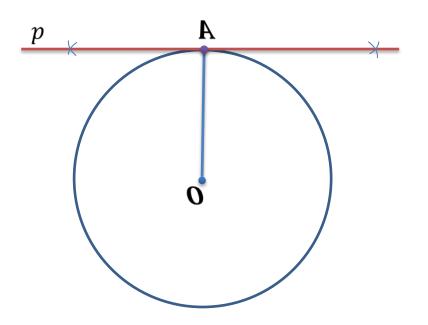
А значит, он является расстоянием от центра окружности до прямой.

То есть радиус окружности и расстояние до прямой равны.



Задача. Через данную точку A окружности с центром O провести касательную к этой окружности.

Решение.



- 1. *OA*
- $2.p \perp OA$
- 3. *p* искомая касательная (по признаку касательной)

Задача. К окружности с радиусом 36 проведена касательная из точки A, удаленной от центра на расстояние, равное 85. Найти длину отрезка касательной от точки A до точки касания.

Решение.

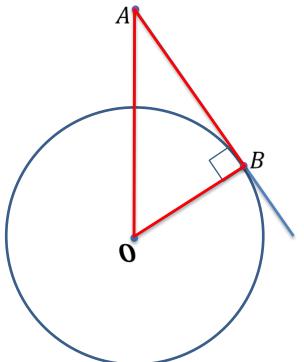
$$\angle OBA = 90^{\circ}$$
 (по свойству касательной)

$$AB^2 = AO^2 - OB^2$$
 (по теореме Пифагора)

$$AB^2 = 85^2 - 36^2$$

$$AB^2 = 5929 \Rightarrow AB = 77$$

Ответ: AB = 77.

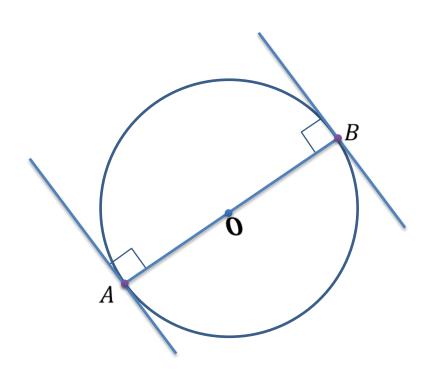


Задача. Доказать, что касательные к окружности, проведенные через концы диаметра, параллельны.

Решение.

По свойству касательных, углы между диаметром и касательными равны 90°.

Значит, по признаку параллельности прямых, получаем, что касательные параллельны.



Задача. Отрезки AK и AM являются отрезками касательных к окружности с центром O, проведенными из точки A. Найти $\angle KAM$, если середина отрезка OA лежит на окружности.

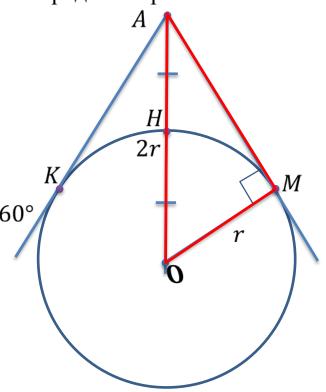
Решение.

$$OA = 2r$$

 $\angle OMA = 90^{\circ}$ (по свойству касательных)

$$OM = \frac{1}{2}AO \Rightarrow \angle OAM = 30^{\circ}$$
 $\angle OAK = \angle OAM \text{ (по свойству отрезков касательных)} $\Rightarrow \angle KAM = 2\angle OAM = 60^{\circ}$$

Ответ: $\angle KAM = 60^{\circ}$.



Прямая, имеющая с окружностью только одну общую точку, называется *касательной* к окружности, а их общая точка называется *точкой касания* прямой и окружности.

Свойство касательной к окружности: Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Свойство отрезков касательных, проведенных из одной точки: Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Признак касательной: Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной.

