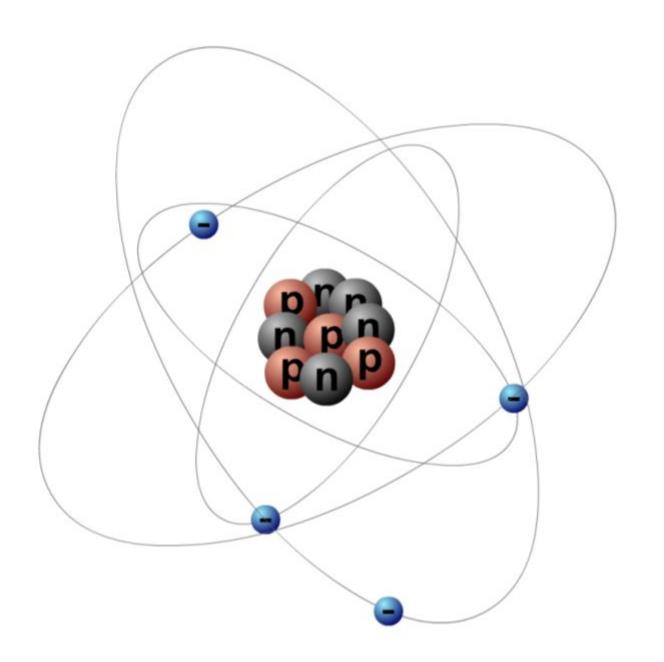
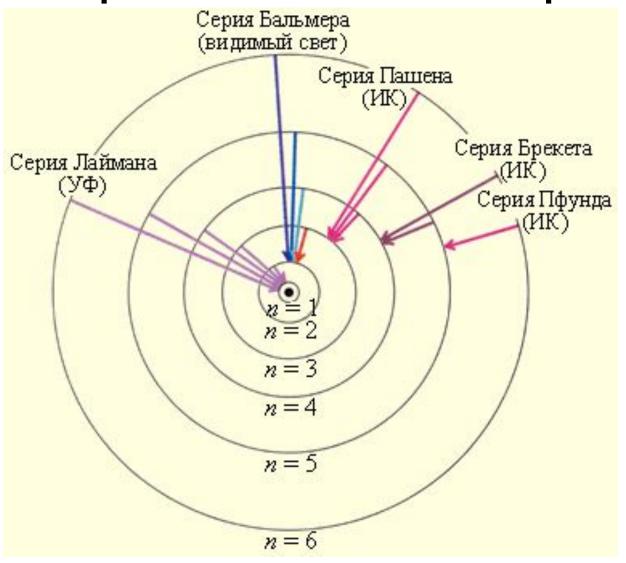

Строение атома


Опыт Резерфорда

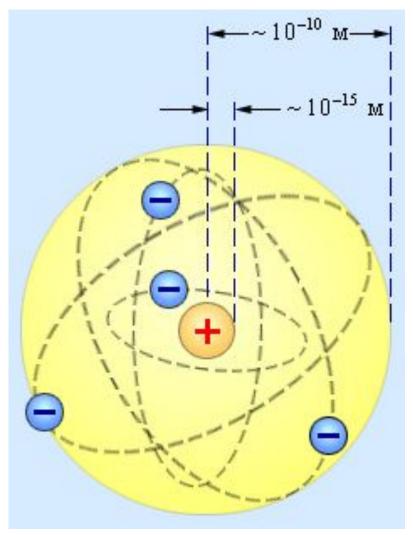
Опыт Резерфорда



Квантовые постулаты Бора

- Атомная система может находиться только в особых стационарных (квантовых) состояниях, каждому из которых соответствует определенная энергия E_n. В стационарных состояниях атом не излучает.
- При переходе из стационарного состояния n в стационарное состояние m излучается (поглощается) квант, энермя колорого равна разности энергий стационарных состояний:
- Третий постулат Бора предлагает правило нахождения стационарных орбит.

Образование спектра

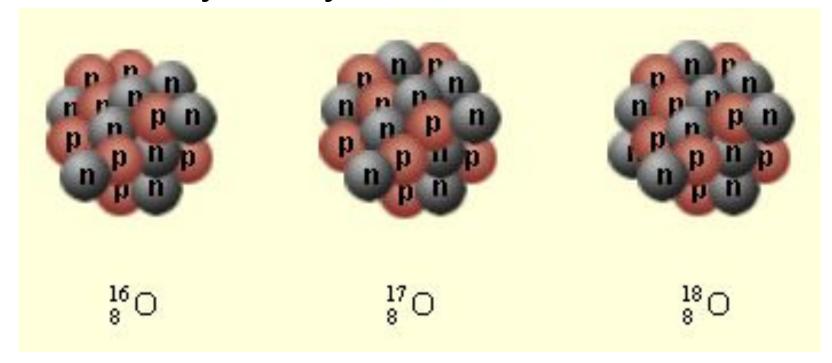


- Теория Бора объяснила возникновение линейчатых спектров
- Радиусы круговых электронных орбит можно найти по формуле: $r_n = r_1 n^2$
- Для атома водорода энергия основного состояния равна:

$$E_1 = -21,7 \cdot 10^{-19} \, \text{Дж} = -13,6 \, \text{эВ}$$

Атом состоит из атомного ядра и электронов

- Атомное ядро заряжено положительно.
- Его диаметр не превышает
 10⁻¹⁴-10⁻¹⁵ м,
- а заряд q равен произведению элементарного заряда на порядковый номер атома Z:
 q = Z·e.

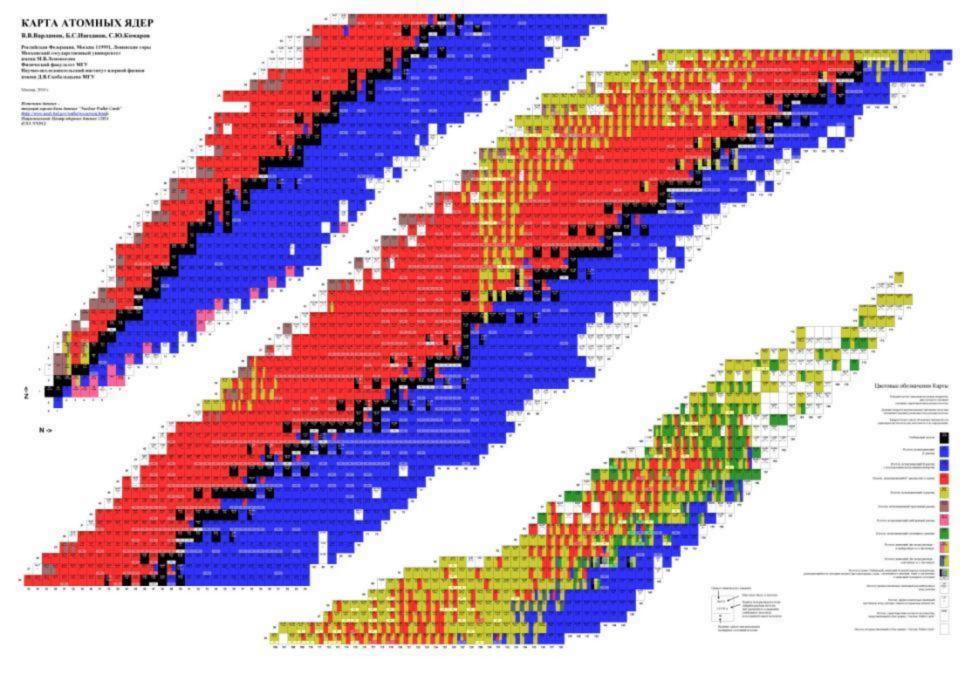


ЧАСТИЦЫ В АТОМЕ

- Электрон это частица, заряд которой отрицателен и равен по модулю элементарному заряду $e = 1,6\cdot10^{-19}$ Кл, а масса $m_{_{\rm P}} = 9,1\cdot10^{-31}$ кг.
- Протон это частица, заряд которой положителен и равен по модулю заряду электрона: $q_p = +1,6\cdot 10^{-19}$ Кл, а масса $m_p = 1,6726\cdot 10^{-27}$ кг.
- Нейтрон это нейтральная частица, масса которой равна $m_n = 1,6749 \cdot 10^{-27}$ кг.

Примеры ядер атомов

Число нейтронов в атоме равно N. Общее число нуклонов в атоме равно массовому числу A: A = Z + N.


Изотопы

 – это атомы, ядра которых содержат одинаковое число протонов, но разное число нейтронов (т.е. атомы одного химического элемента с разным числом нейтронов в ядре).

			8	O12 0.40 MaB	O13 8,58 MC : EP	O14 70,606 c	O15 122.24 c	O16 99.762	O17 0.038	O18 0.200	O19 26,88 c	O20 13.51 c	O21 3.42 c
		7	N10		N12 11.000 Mc	N13 9.965 м	N14 99.634	N15 0.366	N16 7.13 c ; βα	N17 4.173 c : βn	N18 624 mc βn: βα:	N19 271 MC : βn	N20 130 мс ; βn
	6	С8 230 кэВ	C9 126.5 mc : Ep : Eq	m C10 19.290 c	C11 20.334 m	C12 98.89	C13	C14 5700 n	C15 2.449 c	C16 0.747 c : βn	C17 193 мс : βn	C18 92 мс : βn	C19 49 мс βn :
5	B6 2p?	B7 1.4 MaB	B8 770 мс : εα	В9 0.54 кэВ 2а	B10 19.8	B11 80.2	B12 20.20 мс : β3α	В13 17.33 мс	B14 12.5 Mc	B15 9.93 мс : βn :β2n	B16 190 nc <	В17 5.08 мс 64: βл62β3:	B18 26 Hc < 1 n?
4	Be5	Be6 92 кэВ	Ве7 53.22 дн	Be8 5.57 aB	Be9 100.	Be10 1.51E6 n	Be11 13.81 c : βα	Be12 21.49 мс : βn	Be13 2.7E-21 c	Be14 4.35 мс : βn :β2n	Be15 200 Hc < n?	Be16 200 Hc < 2n?	13
Li3 p?	Li4	Li5 1.5 M∋B ≈	Li6 7.59	Li7 92.41	Li8 839.9 мс ; βα	Li9 178.3 мс ; βn	Li10	Li11 8.59 мс :βnα:βn	Li12 10 Hc < n?	10	11	12	
2	He3 0.00014	He4 99.99986	He5 0.60 MaB	He6 806.7 Mc	Не7 150 кэВ	He8 119.1 мс : βn	He9	He10 300 юВ	9				
H1 99.985	H2 0.015	Н3 12.32 л	H4 4.6 MaB	H5 5.7 MaB	H6 1.6 MaB	Н7 29Е-23 л 2n?	7	8					
	П1 10.23 м	2	3	4	5	6							

Атомная единица массы

атомная единица массы (а.е. м.), примерно равная массе одного нуклона: 1 а.е.
 м. = 1,6605·10⁻²⁷ кг

