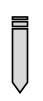
СИНТЕЗ РЕАКЦИОННОСПОСОБНЫХ ОЛИГОМЕРОВ И ПОЛИМЕРОВ НА ИХ ОСНОВЕ

ЛЕКЦИЯ № 5

План лекции


- 1. Модификация полимеров.
- 2. Примеры реакций модификации жидких каучуков.

Цель

направленное изменение свойств полимера, осуществляемое преобразованием его

химического строения либо надмолекулярной структуры под влиянием воздействий различной природы, среди которых можно выделить следующие

воздействия

Химические превращения Физические воздействия

Механохимическая модификация

технологические приемы совмещения полимера с другими олигомерами или полимерами, а также его пластификация или наполнение

Физические воздействия

<u>Преследуемая цель</u>: преобразование надмолекулярной структуры полимера

Теоретические предпосылки: наличие

надмолекулярных образований у полимерных тел

Способы реализации

- Варьирование условий осаждения полимеров
- Изменение природы растворителя и режима его удаления при формировании полимерных покрытий, пленок
- Изменение температурно-временного режима структурообразования полимера
- Введение малых количеств
- структурообразователей
- Внешние механические воздействия на твердое

полимер жиемические превращения уже синтезированных макромолекул или на стадии их переработки

- Реакции с НМ веществами (сюда относят процессы, не сопровождающиеся изменением длины цепи полимераналогичные либо внутримолекулярные превращения, а также реакции сшивания и деструкции)
- Реакции полимера с мономером
- Взаимодействие полимера с ВМ модификатором (оба эти подхода включают методы привитой

Химические превращения

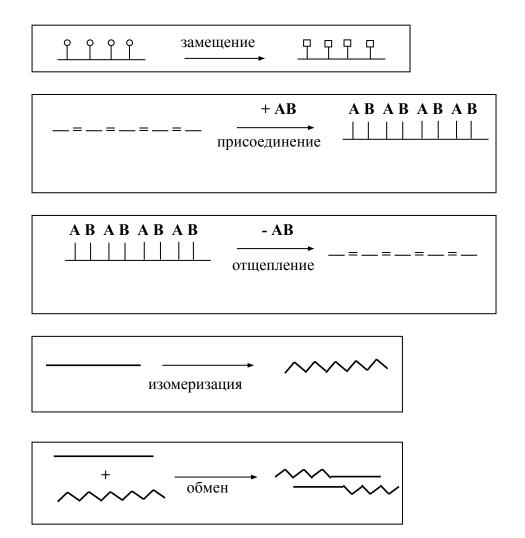
<u>Преследуемая цель</u>: изменение химического состава макромолекул

Теоретические предпосылки: наличие РС групп либо ненасыщенных связей в составе полимерных цепей

Способы реализации

Модификация на стадии синтеза полимера

- Небольшого числа звеньев, содержащих PC группы,
- Полярных/неполярных групп,
- Ионнов металлов I или II групп периодической системы


Особенности:

- 1.Протекает не полностью
- 2.Сопровождается побочными реакциями
- 3. Необходимость многократной обработки полимера
- 4.Существенную роль играют специфические эффекты

Специфические эффекты:

- **1**. Физическая структура исходного полимера (пленка, волокна, гранулы, хлопья)
- 2. Надмолекулярная структура полимера
 - (оба эти эффекта <u>особенно</u> проявляются при проведении реакции<u>в гетерогенной</u> <u>системе</u>)
- 3.Совместимость полимеров (несовместимость может вызывать разделение на фазы или свертывание цепей)
- 4. Конформация и конфигурация (в частности: геометрическая, оптическая и поворотная изомерии) полимерных цепей
- 5. Реакционная способность полимеров: насыщенных, ненасыщенных, сополимеров, неимеющих или имеющих ФГ (боковые и/или концевые)

Схемы изменения структуры и химического состава макромолекул в результате проведения реакций модификации

полиизопреновый каучук

обладает

- •обладающих хорошей разрывной прочностью, высокой эластичностью,
- •высокая водостойкость
- •высокая электроизоляционная стойкость

не обладает

- •пониженная когезионная прочность невулканизованных резиновых смесей (полуфабрикатов), что проявляется в низкой каркасности (сохранению формы при хранении полуфабрикатов
- •стой **Модификация**тви**миснение соействикомификро доя получения му овожн**ию качества или устранения нежелательного качества полимера

ПОЛИБУТАДИЕНОВЫЙ КАУЧУК (стереорегулярный 1,4-цис-полибутадиен)

обладает

•стойкостью к низким температурам и к истиранию

не обладает

- •высокой прочностью при растяжении и обычно наполняется упрочняющими добавками
- •способностью к переработке
- •сопротивлению к раздиру и росту трещин
- •сцеплением с дорожным покрытием

1. Модификация натурального каучука по кратным связям

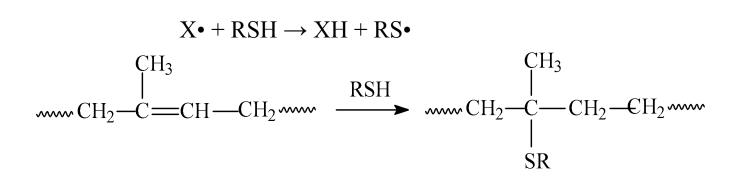
Механизм — свободнорадикальный;

Глубина реакции зависит от концентрации раствора полимера, в разбавленных растворах (менее 0,3 мас.%) глубина выше

Реализация - вальцевание натурального каучука с тиобензойной или тиотрихлоруксусной кислотой в присутствии инициатора (гидропероксид кумола) при температуре выше 100 °C

$$X^{\bullet}$$
 + RCOSH \longrightarrow HX + RCOS $^{\bullet}$ где R: C_6H_5 - или CCl $_3$ -
0,5 - 2 mol 1 basis-mol

 CH_3 CH_3 CH_2 CH_2 CH_2 CH_3 CH_4 CH_5 CH_5


- •материал образуется менее регулярной структуры, что снижает скорость кристаллизации;
- •происходит цис-транс изомеризация каучука;
- •повышается морозо-, масло- и бензостойкость каучука.

2. Модификация жидких каучуков путем взаимодействия с меркаптанами

Механизм - свободнорадикальный

Реализация – обработка стереорегулярного бутадиенового или изопренового каучука

- низкомолекулярными меркаптанами в присутствии ДАК (60 °C)
- дисульфидами (130-170 °C)

- •материал образуется менее регулярной структуры, что снижает скорость кристаллизации;
- •происходит цис-транс изомеризация каучука;
- •повышается озоностойкость каучука;
- •улучшаются физико-механические свойства каучука.

3.1. Модификация жидких каучуков путем замещения водорода в α-метиленовых группах

Механизм - свободнорадикальный

Реализация - присоединение малеинового ангидрида (3-5%) к олигодиену путем замещение водорода в α -метиленовых группах с образованием линейных структур (**IV**) и сшитых структур (**V**).

Количество присоединенного малеинового ангидрида изменяется от 2 до 60 мас.%

Например, модификация олигобутадиена м/б осуществлена при 100-130 °C и ниже в массе или в среде растворителей (ароматические углеводороды).

Для предотвращения гель-образования в систему вводят ингибитор, третбутилфенол.

(I)

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{2}$$

$$CH_{4}$$

$$CH_{5}$$

$$CH_{4}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{7}$$

$$CH_{1}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{7}$$

$$CH_{1}$$

$$CH_{1}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{7}$$

$$CH_{1}$$

$$CH_{1}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{4}$$

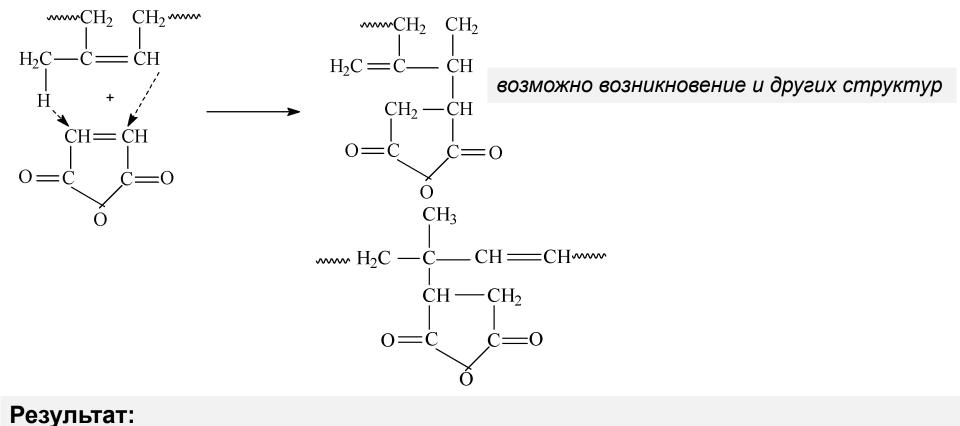
$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{7}$$

$$CH_{7$$


3. 1. Модификация жидких каучуков путем замещения водорода в α-метиленовых группах (продолжение)

- •повышенная адгезия к металлу;
- •повышается атмосферо- и химическая стойкость каучука;
- •получают разнообразные покрытия.

3.2. Модификация жидких каучуков с сохранением общей ненасыщенности полимерной цепи в результате перемещения двойных связей

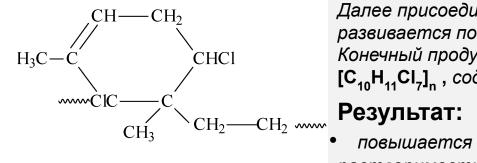
Механизм - *термическое присоединение*, т.е. без радикальных инициаторов, в интервале температур 180-220°C

Реализация - присоединение малеинового ангидрида к олигобутадиену

Результат:

сохранение общей ненасыщенности полимерной цепи и перемещение двойных связей

4.1. Хлорирование жидких каучуков:


Механизм - замещение атома водорода α-метиленовой группы

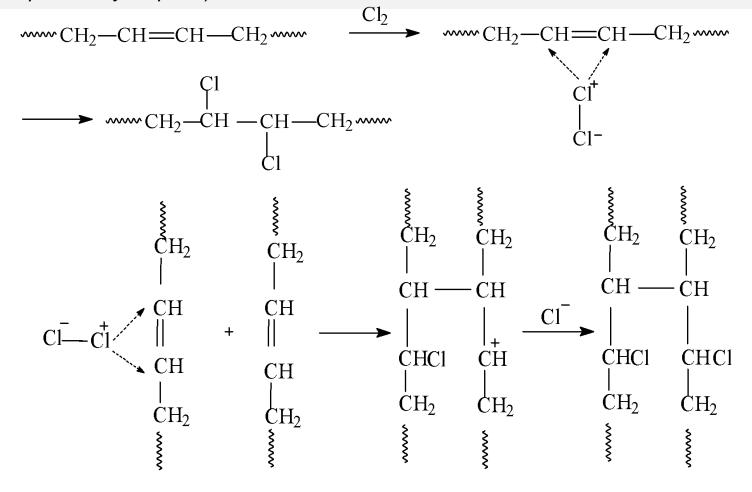
Реализация — пропускание газообразного хлора в раствор пластифицированного натурального каучука в среде четыреххлористого углерода при 80°C.

Скорость процесса зависит от степени пластификации каучука, типа растворителя, концентрации раствора

$$CH_3$$
 CH_2
 CH_2
 CH_2
 CH_2
 CH_3
 CH_2
 CH_2

После связывания 35 % хлора начинает происходить внутримолекулярная циклизация

CICH— CHC1


Далее присоединение хлора идет как по двойным связям, так и развивается повсеместное замещение атомов водорода. Конечный продукт, состав которого соответствует формуле $[C_{10}H_{11}CI_{7}]_{n}$, содержит 68 % хлора.

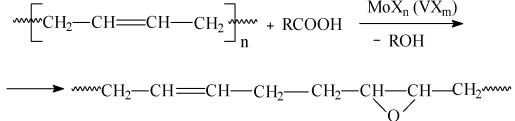
- повышается температура стеклования
- •растворимость сохраняется, не растворяется только в бензине;
- •негорюч, стоек к кислотам, щелочам, солям, медленно реагирует с аминами;
- •используют для антикоррозионных покрытий и огнестойких пропиточных составов;
- •Получают высококачественные клеи для крепления резин к металлам.

4.2. Хлорирование жидких каучуков:

Механизм - транс-присоединение хлора по двойным связям и реакции частичного сшивания

Реализация - пропускание хлора в неполярных растворителях (часто в четыреххлористом углероде)

5. Эпоксидирование жидких каучуков


Механизм - присоединение **гидропероксидов** к звеньям жидкого каучука,

присоединенным в цепи макромолекулы в 1,4-положении

Реализация - при 80-110 °C в среде растворителя (хлороформ, тетрахлорметан, бензол,

толуол) в присутствии солей, оксидов или комплексных соединений молибдена или ванадия (концентрация катализатора 0,1-0,2 мас.% на полимер);

Соотношение каучук-гидропероксид варьируют от 2:1 до 15:1 моль, что позволяет менять содержание эпоксигрупп в цепи от 23 до 4 мас.%

RCOOH + H_2O_2 \longrightarrow RCOOOH + H_2O

Результат:

- глубина эпоксидирования не более 80 %;
- высокие прочностные и диэлектрические характеристики;
- высокая адгезия к металлам:
- применяют в качестве покрытий для металлов и пластмасс, адгезивов, заливочных компаундов в электротехнике, замазки.

Первоначально процесс получения эпоксидных каучуков вели:

раствор жидкого каучука расчетного количества надкислоты (надмуравьиной,

в среде растворителя путем введения в

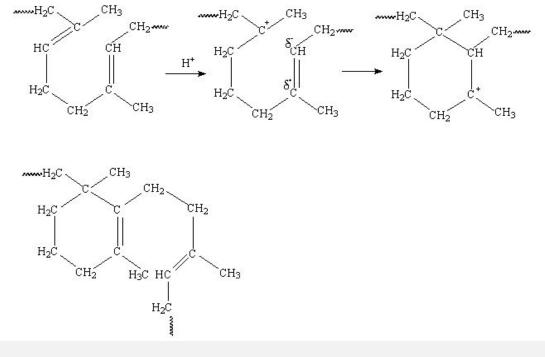
надуксусной или надбензойной) в среде растворителя (бензол, хлороформ) с добавлением ацетата или бикарбоната натрия.

Недостатки метода:

- высокие взрывоопасность и коррозионная активность реакционной
- среды; • сложность отделения каучука от органических кислот и утилизация их из сточных вод.

6. Гетерогенное и гомогенное гидрирование жидких каучуков

$$X_nMe-R + H_2 \longrightarrow X_nMeH + RH$$


$$X_nMeH + \cdots CH \longrightarrow CH \longrightarrow CH \longrightarrow CH_2 \cdots + H_2 \longrightarrow \cdots CH_2 \longrightarrow CH_2 \cdots + HMeX_n$$

L IVIEX			—	
Тип гидрировани я	Температура, °С	Давление водорода, Мпа	Катализаторы	Среда
гетерогенно е	60-260	20	на основе никеля, платины, палладия в большом (10-50%) количестве	Углеводородн ые растворител и: алифатическ ие или ароматически е
гомогенное	не выше 150	не более 5	координационного типа, катализаторы Циглера-Натта (Ni, Co, Fe, Ti, Cr) + олефины или алкины	

[•] повышенная термо-, химическая и окислительная стойкость.

7. ВНУТРИМОЛЕКУЛЯРНАЯ ЦИКЛИЗАЦИЯ КАУЧУКА

Механизм - по катионному механизму через стадию образования иона карбония Реализация — проводят в массе, в растворе или в дисперсии (латексе) под действием протонных или апротонных кислот ($H_2SO_{4,}$ HCl, $SiCl_4$, $TiCl_4$, сульфокислот) при температуре выше 100 °C.

Результат: • получают жесткий термопрен;

- высокая хим-, водо- и атмосферостойкость;
- применяют для создания клея, способного скрепить резину с металлом;
- применяют для создания лакокрасочных материалов.