Дифференциальные уравнения

Тема:

Однородные уравнения. Уравнения, приводящиеся к однородным

Лектор Пахомова Е.Г.

§5. Однородные уравнения

Функция M(x, y) называется однородной степени т (или измерения т), если $\forall t \neq 0$ справедливо равенство $M(tx, ty) = t^m \cdot M(x, y)$.

ПРИМЕРЫ однородных функций:

$$f(x,y) = x^{3} + 3x^{2}y, \qquad f(x,y) = \sqrt[4]{x^{8} + y^{8}},$$

$$f(x,y) = \frac{x^{3} + y^{3}}{x^{2} + xy + y^{2}}, \qquad f(x,y) = \frac{x^{2} + y^{2}}{xy},$$

$$f(x,y) = \sin\frac{x}{y} + \ln y - \ln x.$$

Дифференциальное уравнение первого порядка

$$y' = f(x, y)$$

называется однородным относительно x и y, если функция f(x,y) является однородной нулевой степени.

Дифференциальное уравнение

$$M(x,y)dx + N(x,y)dy = 0$$

является однородным относительно x и y, если функции M(x,y) и N(x,y) – однородные функции одного и того же измерения.

Однородное уравнение приводится к уравнению с разделяющимися переменными заменой

 $z(x) = \frac{y}{x}$

Замечание. Некоторые однородные уравнения проще интегрируются с помощью замены

$$\frac{x}{y} = z(y)$$

§6. Уравнения, приводящиеся к однородным

1. Уравнения вида

$$y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$

Рассмотрим уравнение
$$(7) y' = f \left(\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + c_2} \right)$$
 Если $c_1 = c_2 = 0$, то уравнение (7) будет однородным, т.к.

 $f\left(\frac{a_1x+b_1y}{a_2x+b_2y}\right)=\varphi\left(\frac{y}{x}\right).$ Пусть $c_1\neq 0$ или $c_2\neq 0$. Тогда уравнение (7) заменой переменных приводится либо к уравнению с разделяющимися переменными, либо к однородному.

Это зависит от определителя

$$\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}.$$

а) Если $\Delta \neq 0$, то (7) приводится к однородному уравнению.

Действительно, если $\Delta \neq 0$, то система уравнений

$$\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \\ \text{имеет единственное решение } x = \alpha, y = \beta \ . \end{cases}$$

Сделаем в (7) замену переменных: $x = t + \alpha$, $y = z + \beta$.

Тогда:

$$\Rightarrow \frac{dz}{dt} = f \left(\frac{a_1(t+\alpha) + b_1(z+\beta) + c_1}{a_2(t+\alpha) + b_2(z+\beta) + c_2} \right),$$

$$\Rightarrow \frac{dz}{dt} = f \left(\frac{a_1 t + b_1 z + (a_1 \alpha + b_1 \beta + c_1)}{a_2 t + b_2 z + (a_2 \alpha + b_2 \beta + c_2)} \right),$$

$$\frac{dz}{dt} = f\left(\frac{a_1t + b_1z}{a_2t + b_2z}\right).$$

однородное уравнение

б) $E c \pi u \Delta = 0$, то уравнение (7) приводится к уравнению с разделяющимися переменными.

Действительно, если $\Delta = 0$, то строки определителя Δ пропорциональны (см. упражнение в курсе «Линейная алгебра»),

T.e.
$$a_2 = \lambda a_1$$
, $b_2 = \lambda b_1$.

Тогда $y' = f \left(\frac{a_1 x + b_1 y + c_1}{\lambda (a_1 x + b_1 y) + c_2} \right)$ $\Rightarrow y' = \phi(a_1 x + b_1 y).$

Это уравнение (6) (см. §4). Оно приводится к уравнению с разделяющимися переменными с помощью замены

$$z(x) = a_1 x + b_1 y.$$

2. Обобщенно однородные уравнения

Уравнение 1-го порядка называется обобщённо однородным, если существует такое рациональное число α , что каждое слагаемое уравнения — однородная функция степени α относительно x, y, y' (относительно x, y, dx, dy), если считать x — величиной измерения 1, y — величиной измерения $\alpha, y'(dy)$ — величиной измерения α — α —

Иначе говоря, уравнение P(x,y)dx + Q(x,y)dy = 0 — обобщенно однородное, если $\exists \alpha \in \mathbb{Q}$ такое, что $P(tx, t^{\alpha}y)dx + Q(tx, t^{\alpha}y) \cdot (t^{\alpha-1}dy) = t^{m} \cdot [P(x,y)dx + Q(x,y)dy]$.

Обобщенно однородное уравнение приводится κ однородному уравнению заменой $y = z^{\alpha}$.

Обобщенно однородное уравнение приводится к уравнению с разделяющимися переменными заменой $y = zx^{\alpha}$.