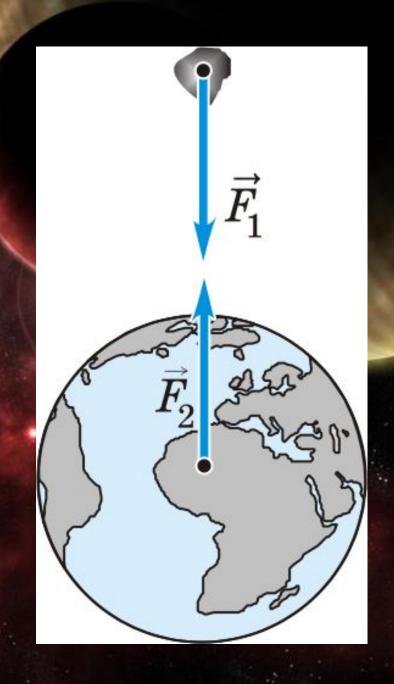


<u>Из истории открытия</u> закона всемирного тяготения...


Иоганн Кеплер (1571-1630) используя идею Коперника о гелиоцентрической системе и результаты наблюдений Тихо Браге, установил законы движения планет вокруг Солнца, однако и он не смог объяснить динамику этого движения.

Исаак Ньютон открыл этот закон в возрасте 23 лет, но целых 9 лет не публиковал его, так как имевшиеся тогда неверные данные о расстоянии между Землей и Луной не подтверждали его идею. Лишь в 1667 году, после уточнения этого расстояния, закон всемирного тяготения был наконец отдан в печать.

Одним из первых учёных, кто понял, что не только Солнце притягивает к себе планеты, но и планеты притягивают к себе Солнце, был английский учёный Роберт Гук.
Он писал:

«Все небесные тела имеют притяжение, или силу тяготения к своему центру, вследствие чего они не только притягивают собственные части и препятствуют им разлетаться, как наблюдаем на Земле, но притягивают также все другие небесные тела, находящиеся в сфере их действия».

Как был открыт закон всемирного тяготения.

Ньютон предположил, что ряд явлений, казалось бы не имеющих ничего общего (падение тел на Землю, обращение планет вокруг Солнца, движение Луны вокруг Земли, приливы и отливы и т. д.), вызваны одной причиной.

Окинув единым мысленным взором «земное» и «небесное», Ньютон предположил, что существует единый закон всемирного тяготения, которому подвластны все тела во Вселенной — от яблок до планет!

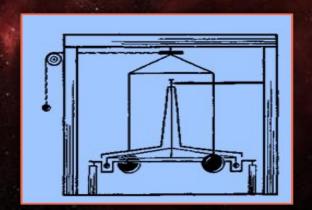
Запомни, что ...

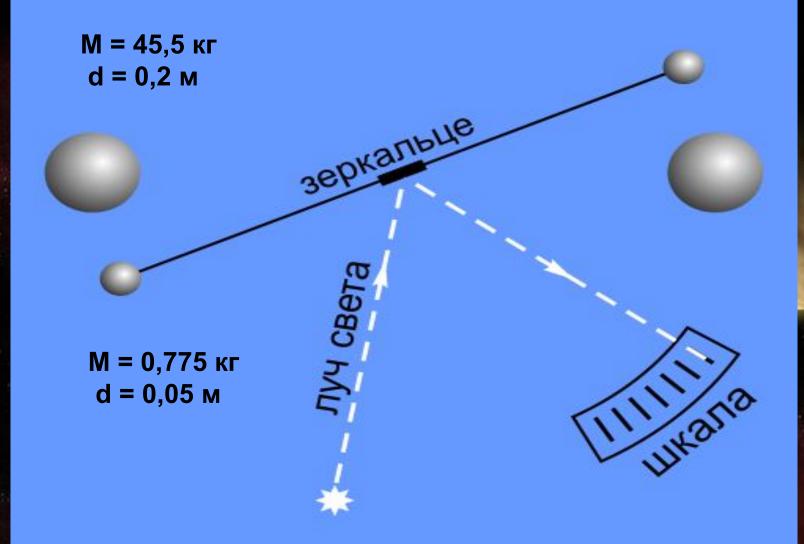
<u>Всемирное тяготение</u>
притяжение между всеми тельми Вселедной

<u>Гравитационные силы</u> — силы всемирного тяготения.

Гравитационное поле — особый вид материи, осуществляющий гравитационное взаимодействие.

В 1687 г. Ньютон установил один из фундаментальных законов механики, получивший название закона всемирного тяготения:


Два любых тела притягиваются друг к другу с силой, модуль которой прямо пропорционален произведению их масс и обратно пропорционален квадрату расстояния между ними,

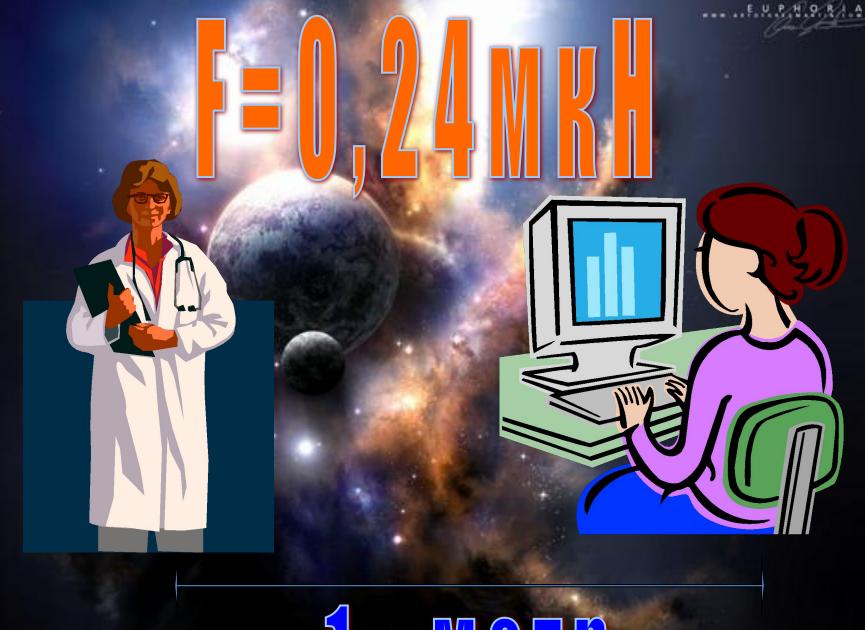

$$F = G \frac{m_1 m_2}{r^2}$$

где \underline{m}_1 и \underline{m}_2 – массы взаимодействующих тел, \underline{r} – расстояние между телами, G – коэффициент пропорциональности, одинаковый для всех тел в природе и называемый постоянной всемирного тяготения или гравитационной постоянной.

Эксперимент Генри Кавендиша определение значения гравитационной постоянной

В 1788 году английский физик Генри Кавендиш определил, насколько велика сила притяжения между двумя объектами. В результате была достаточно точно определена гравитационная постоянная, что позволило Кавендишу впервые определить и массу Земли.

G - универсальная гравитационная постоянная 6,67 • 10 - 11 H*м²/кг 2

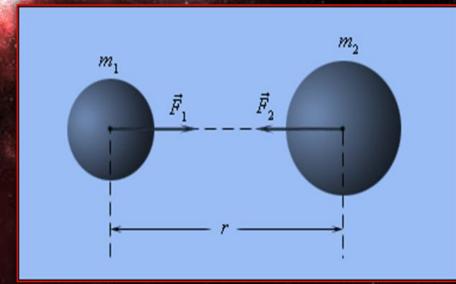

....F. M. P. H. O. R 1.4

Удивительный и странный По устройству мир земной! Во всемирной постоянной Смысл содержится простой: Притяжения здесь сила Для двух тел отражена, Килограмм у каждой было, Между ними метр длина.

Е. Ефимовский

<u>Физический смысл</u> гравитационной постоянной

Гравитационная постоянная численно равна силе притяжения двух тел, массой 1 кг каждое, находящихся на расстоянии 1 м друг от друга.


Границы применимости закона

Закон всемирного тяготения имеет определенные границы применимости; он применим, если:

- 1) взаимодействующие тела материальные точки;
- 2) тела имеют форму шара;
- 3) одно из тел шар большого радиуса, взаимодействующий с телом, размер которого много меньшо вмеров шара.

Закон неприменим, например, для взаимодействия бесконечного стержня и шара.

Сила тяготения становится заметной только тогда, когда хотя бы одно из взаимодействующих тел имеет очень большую массу (планета, звезда).

Механизм гравитационного взаимодействия

В настоящее время механизм гравитационного взаимодействия представляется следующим образом.

Каждое тело массой M создает вокруг себя поле, которое называют гравитационным.

Если в некоторую точку этого поля поместить пробное тело массой m, то гравитационное поле действует на данное тело с силой F, зависящей от свойств поля в этой точке и от величины массы пробного тела.

равитационное

поле

СУЩЕСТВУЕТ ВОКРУГ ЛЮБОГО ТЕЛА ОСУЩЕСТВЛЯЕТ ПРИТЯЖЕНИЕ МЕЖДУ ТЕЛАМИ

GBOMGTBA

ВСЕПРОНИКАЮЩ АЯ СПОСОБНОСТЬ ХАРАКТЕРИЗУЕТЬ Я

ГРАВИТАЦИОННЫ М ЗАРЯДОМ -МАССОЙ

F. U. P. H. O. R. I. A

Значение закона всемирного тяготения:

- Объясияет движение планет
- Объясняет морские приливы и отливы
- Позволил открыть новые планеты – Нептун и Плутон
- Можно предсказывать солнечные и лунные затмения
- Можно объяснить строение Солнечной системы

Подумай и ответь.

- 1. Почему Луна не падает на Землю?
- 2. Почему мы замечаем силу притяжения всех тел к Земле, но не замечаем взаимного притяжения между самими этими телами?
- 3. Как двигались бы планеты, если бы сила притяжения Солнца внезапно исчезла?
- 4. Как двигалась бы Луна, если бы она остановилась на орбите?
- 5. Притягивает ли Землю стоящий на ее поверхности человек? Летящий самолет? Космонавт, находящийся на орбитальной станции?

Подумай и ответь.

- 1. Некоторые тела (воздушные шары, дым, птицы) поднимаются вверх, несмотря на тяготение. Как вы думаете, почему? Нет ли здесь нарушения закона всемирного тяготения?
- 2. Что нужно сделать, чтобы увеличить силу тяготения между двумя телами?
- 3. Какая сила вызывает приливы и отливы в морях и океанах Земли?
- 4. Почему мы не замечаем гравитационного притяжения между окружающими нас телами?

Расчётные задачи

- 1. Космический корабль массой 8 т приблизился к орбитальной космической станции массой 20 т на расстояние 500 м. Найдите силу их взаимного притяжения.
- 2. На каком расстоянии сила притяжения между двумя телами массой по **1000 кг** каждое будет равна **6,67 10**

 9 H?
- 3. Два одинаковых шарика находятся на расстоянии **0,1 м** друг от друга и притягиваются с силой **6,67 10** ⁻¹⁵ H. Какова масса каждого шарика?

F. V. P. H. O. B. I. A

Вывод:

- Между всеми телами существует всемирное тяготение
- Сила взаимодействия между двумя телами зависит от массы тел и от квадрата расстояния между ними
- Коэффициент пропорциональности гравитационная постоянная
- Всемирное тяготение осуществляется посредством гравитационного поля особой формы материи
- Закон всемирного тяготения имеет границы применимости

Помашнее задание

- §15,
- устно ответить на вопросы в конце параграфа,
- •упражнение 15 (2,3,5).

