

Проверка с/п

572 (б)

Найдите: h, a и b, если $b_c = 36$, $a_c = 64$.

$$h = \sqrt{36 \cdot 64} = 48;$$

 $a = \sqrt{(36 + 64) \cdot 64} = 80;$
 $b = \sqrt{100 \cdot 36} = 60.$

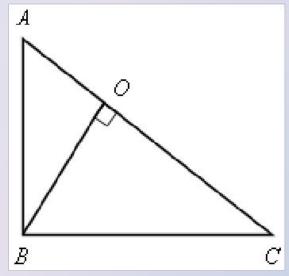
Проверка с/п

574 (б)

Докажите, что: $\frac{a^2}{a_c} = \frac{b^2}{b_c}$.

Из формул
$$a_c=rac{a^2}{c}$$
 и $b_c=rac{b^2}{c}$

следует:
$$c=rac{a^2}{a_c}$$
 и $c=rac{b^2}{b_c}$


Следовательно, $\frac{a^z}{a_c} = \frac{b^z}{b_c}$

Проверка с/п

576

Решение

Пусть AB = 6x, тогда BC = 5x.

По теореме П

$$AC = \sqrt{AB^2 + BC^2} = \sqrt{36x^2 + 25x^2} = \sqrt{61x}.$$

По доказанному в задаче № 573

$$AO = \frac{AB^2}{AC}$$
, $OC = \frac{BC^2}{AC}$,

$$AO - OC = \frac{AB^2}{AC} - \frac{BC^2}{AC} = \frac{AB^2 - BC^2}{AC} = \frac{36x^2 - 25x^2}{\sqrt{61}x} = \frac{11}{\sqrt{61}}$$

$$AO - OC = AC$$
 AC AC $= \sqrt{61}$ $AO - OC = 11$, поэтому $\sqrt{61}$ $x = 11$; $x = \sqrt{61}$ $AC = 61$ см.

Кластер

Признаки подобия

ЧИКОВ

Треугольники ABC $\sim A_1B_1C_1$ подобны

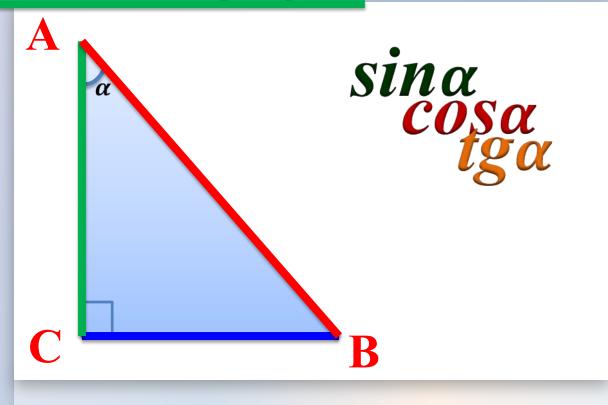
если два угла одного треугольника соответственн о равны двум углам другого

если две стороны и угол, заключенный между ними, одного ∆ соответственно равны двум сторонам и углу, заключенному между ними, другого Δ

если две стороны одного Δ пропорциональны двум сторонам другого Δ , а углы, заключенные между этими сторонами, равны

Если сторона и два прилежащих к ней угла одного ∆ соответственно равны стороне и двум прилежащим к ней углам другого

если три стороны одного пропорциональ ны трем сторонам другого Δ

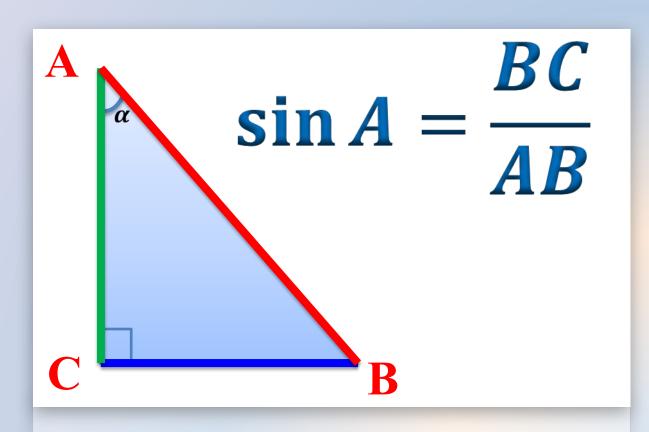

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника

Синус, косинус и тангенс острого угла прямоугольного треугольника

АВ – гипотенуза

ВС – катет, противолежащий углу А

АС – катет, прилежащий углу А

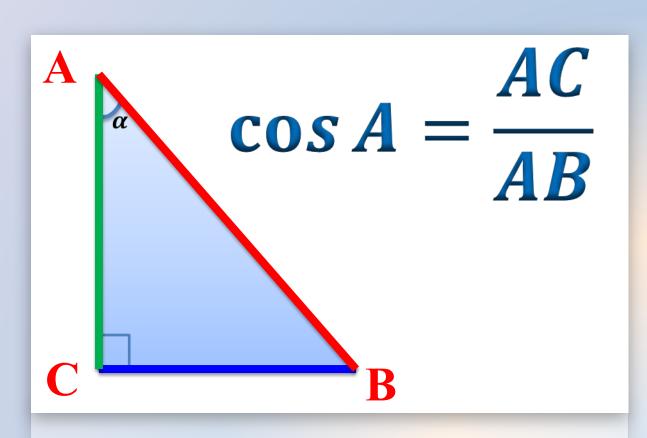

Синус острого угла sina

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

обозначение:

sina

(«синус альфа»)


Косинус острого угла_{соѕα}

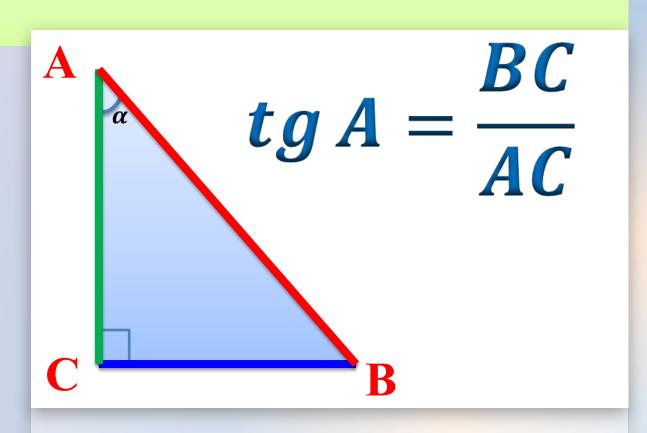
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

обозначение:

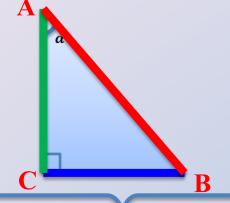
Cosa

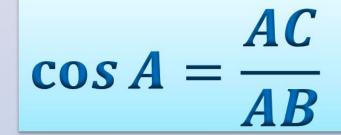
(«косинус альфа»)

Тангенсом острого угла_{tgα}


Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему

катету.


обозначение:


 $tg\alpha$

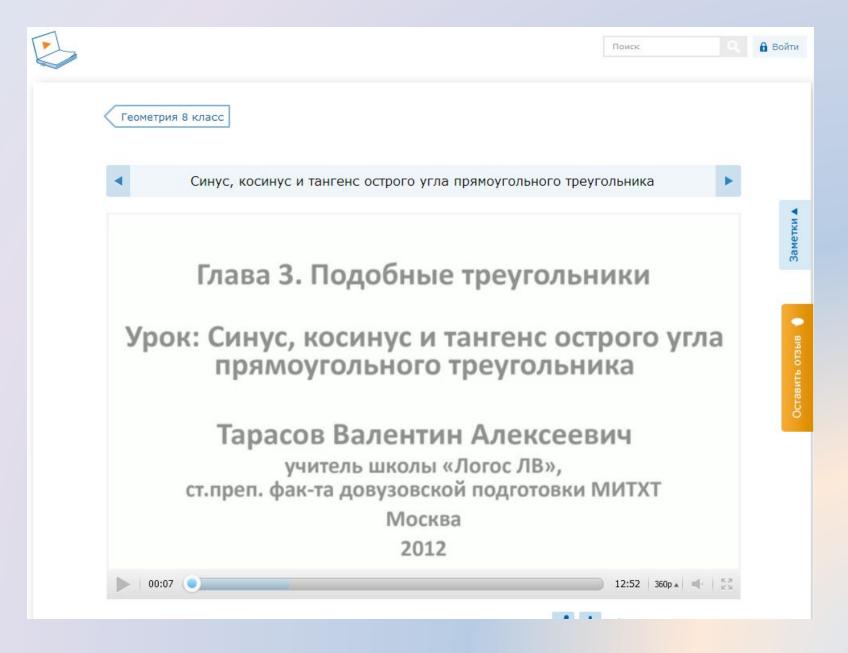
(«тангенс альфа»)

$$\sin A = \frac{BC}{AB}$$

$$\frac{\sin A}{\cos A} = \frac{BC}{AB} \cdot \frac{AB}{AC} = \frac{BC}{AC}$$

$$\frac{BC}{AB} \cdot \frac{AB}{AC} = \frac{AC}{AC}$$

$$tgA = \frac{BC}{AC}$$



$$tg A = \frac{\sin A}{\cos A}$$

$$tg A = \frac{\sin A}{\cos A}$$

Тангенс угла равен отношению синуса к косинусу этого угла.

Видеофрагмент с сайта Интернет Урок:

Основное тригонометрическое тождество

$$\sin^2 A + \cos^2 A = 1$$

Упражнения

№ 591 (a, б),

№ 592 (а, в, д),

№ 593 (a)

Решение

№ 591 (a, б)

Найдите синус, косинус и тангенс углов A и B треугольника ABC с прямым углом C, если: а) BC=8, AB=17; б) BC=21, AC=20; в) BC=1, AC=2; г) AC=24, AB=25.

Решение. a)
$$\sin A = \frac{BC}{AB} = \frac{8}{17}$$
; $\cos A = \sqrt{1-\sin^2 A} = \frac{15}{17}$; $\operatorname{tg} A = \frac{\sin A}{\cos A} = \frac{8}{15}$; $\cos B = \frac{BC}{AB} = \sin A = \frac{8}{17}$; $\sin B = \cos A = \frac{15}{17}$; $\operatorname{tg} B = \frac{15}{8}$. 6) $AB = \sqrt{BC^2 + AC^2} = \sqrt{21^2 + 20^2} = 29$; $\sin A = \cos B = \frac{21}{29}$; $\cos A = \sin B = \frac{20}{29}$; $\operatorname{tg} A = \frac{21}{20}$; $\operatorname{tg} B = \frac{20}{21}$.

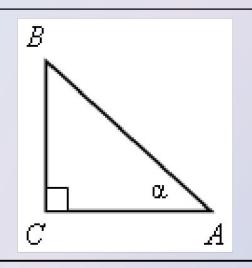
Решение

№ 592 (а, в, д)

592. Постройте угол
$$\alpha$$
, если: a) $\operatorname{tg} \alpha = \frac{1}{2}$; б) $\operatorname{tg} \alpha = \frac{3}{4}$; в) $\cos \alpha = 0.2$; г) $\cos \alpha = \frac{2}{3}$; д) $\sin \alpha = \frac{1}{2}$; е) $\sin \alpha = 0.4$.

Решение. а) Возьмем какой-нибудь отрезок PQ и построим прямоугольный треугольник ABC, у которого катет BC=PQ, а катет AC=2PQ. Тогда $\angle A=\alpha$, так как $\operatorname{tg} A=\frac{BC}{AC}=\frac{1}{2}$.

- в) Возьмем какой-нибудь отрезок PQ и построим прямоугольный треугольник ABC, у которого катет AC=PQ, а гипотенуза AB=5PQ. Тогда $\angle A=\alpha$, так как $\cos A=\frac{AC}{AB}=0.2$.
- д) Возьмем какой-нибудь отрезок PQ и построим прямоугольный треугольник ABC, у которого катет BC=PQ, а гипотенуза AB=2PQ. Тогда $\angle A=\alpha=30^\circ$, так как $\sin A=\frac{1}{2}$.


Решение

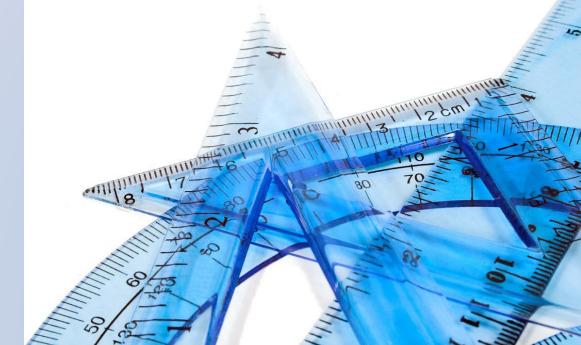
№ 593 (a)

593. Найдите: а) $\sin \alpha$ и $\operatorname{tg} \alpha$, если $\cos \alpha = \frac{1}{2}$; б) $\sin \alpha$ и $\operatorname{tg} \alpha$, если $\cos \alpha = \frac{2}{3}$; в) $\cos \alpha$ и $\operatorname{tg} \alpha$, если $\sin \alpha = \frac{\sqrt{3}}{2}$; г) $\cos \alpha$ и $\operatorname{tg} \alpha$, если $\sin \alpha = \frac{1}{4}$.

Решение. a)
$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \frac{\sqrt{3}}{2}$$
, $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha} = \sqrt{3}$;

Итоги урока

$$\cos \alpha = \frac{AC}{AB}$$
; $\sin \alpha = \frac{BC}{AB}$; $\tan \alpha = \frac{BC}{AC}$; $\sin^2 \alpha + \cos^2 \alpha = 1$; $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$.


Рефлексия

No	Вопрос	Да	Нет	Затрудняюсь
1.	Я знаю, что такое синус острого угла			
	прямоугольного треугольника			
2.	Я знаю, что такое косинус острого			
	угла прямоугольного треугольника			
3.	Я знаю, что такое тангенс острого			
	угла прямоугольного треугольника			
4.	Я знаю основное тригонометрическое			
	тождество			

Задание на самоподготовку

вопросы 15, 16, 17, с. 161; №№ 591 (в, г), 592 (б, г, е), 539 (б).

Источники:

- 1. Геометрия. 7-11 классы: поурочные планы по учебникам Л. С. Атанасяна. Компакт-диск для компьютера.
- 2. http://talisman.sochi2014.com/
- 3. Картинки PowerPoint.