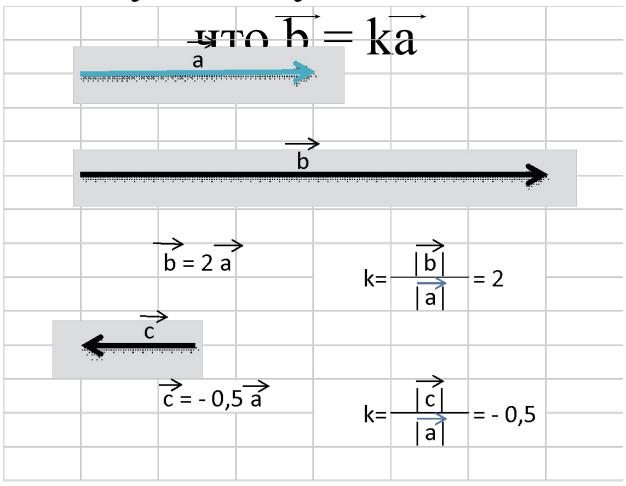
Разложение вектора по двум неколлинеарным векторам. Координаты вектора.

9 класс

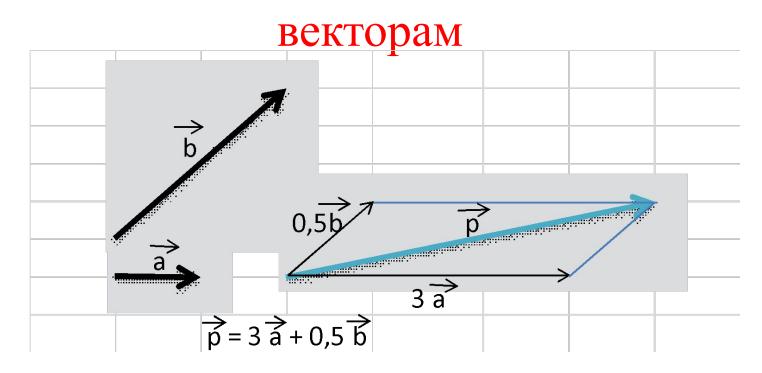
Разложение вектора по двум неколлинеарны м векторам

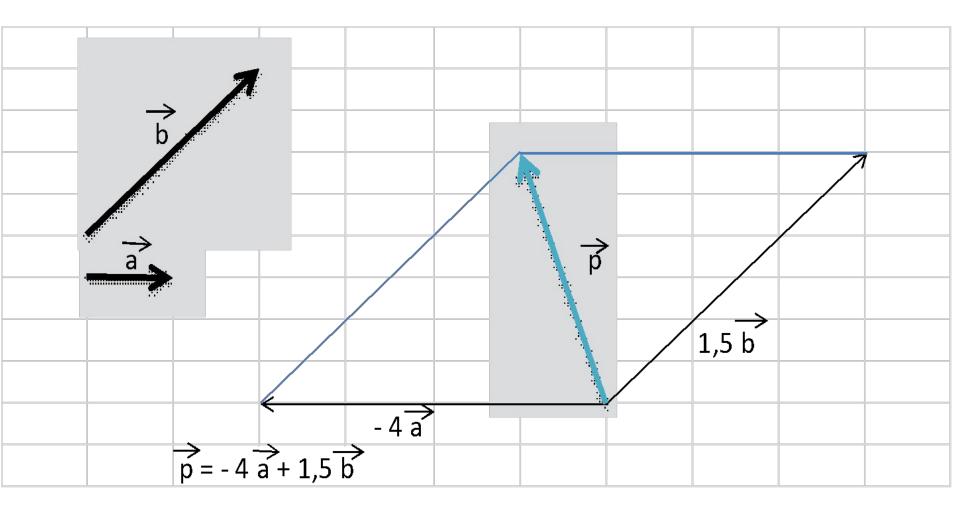
Если векторы а и b коллинеарны и $a \neq 0$, то существует такое число k,



Любой вектор можно представить как результат сложения двух неколлинеарных векторов (сумма по правилу параллелограмма), т. е.

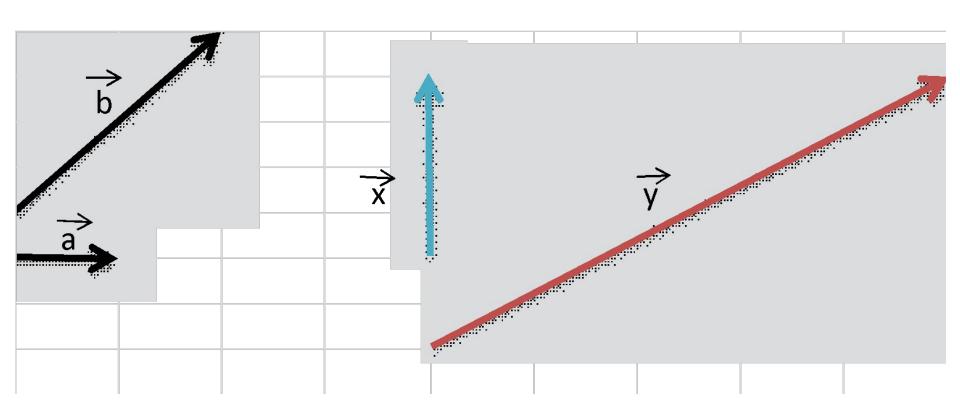
разложить по двум неколлинеарным

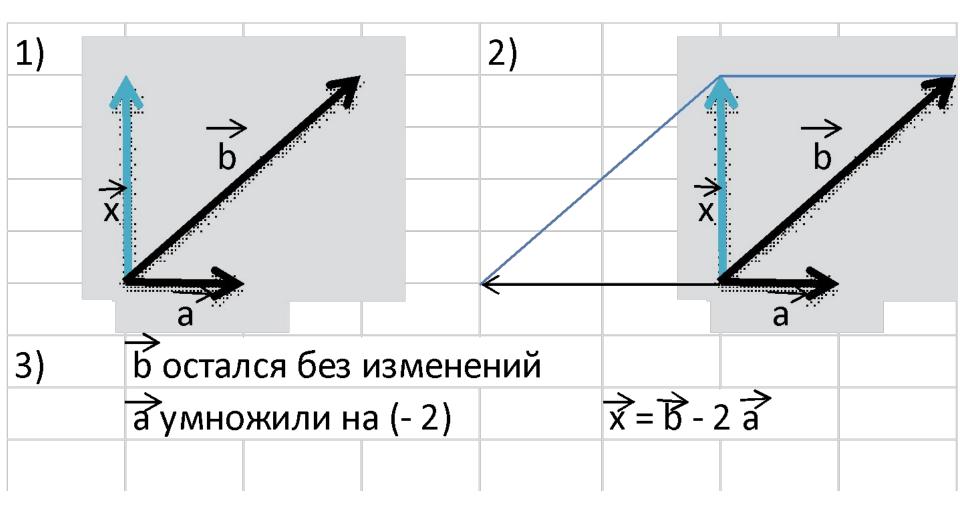


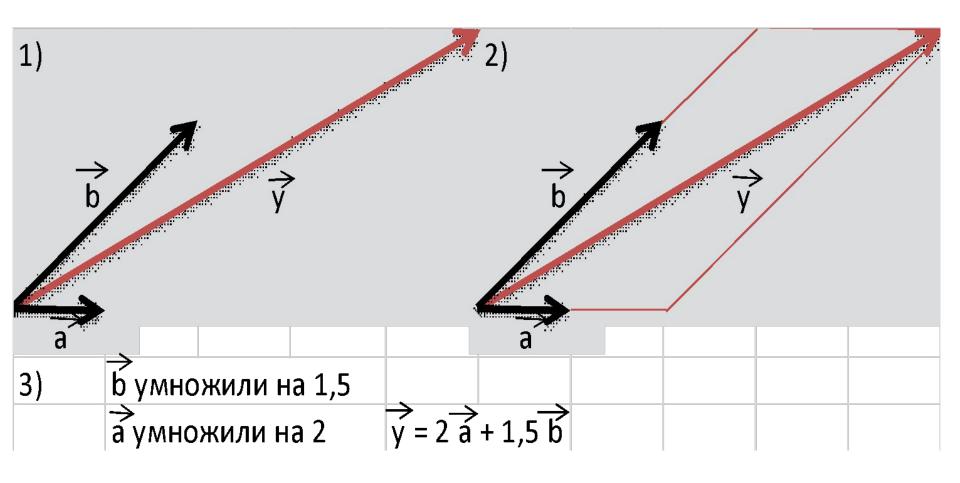


Чтобы разложить вектор по двум векторам надо: 1) отложить все три вектора от одной точки; 2) достроить до параллелограмма; 3) вычислить значения к для каждого вектора

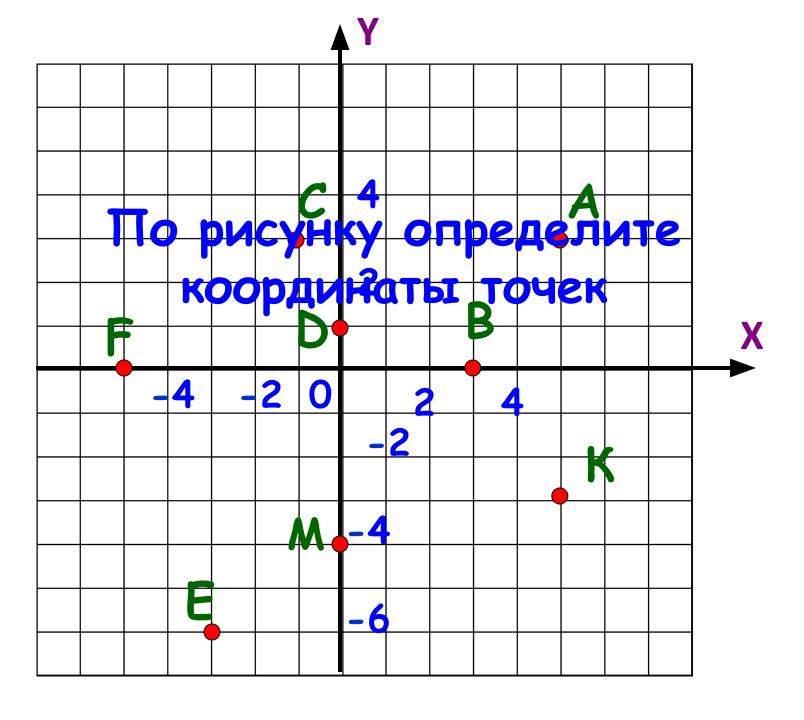
Задание: разложите векторы х и у по векторам а и в



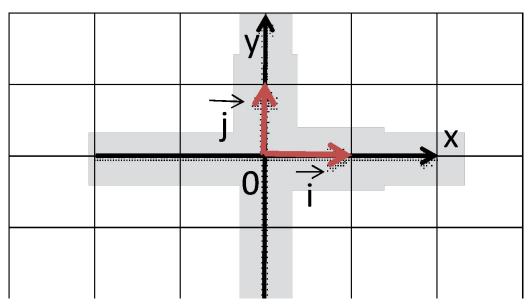




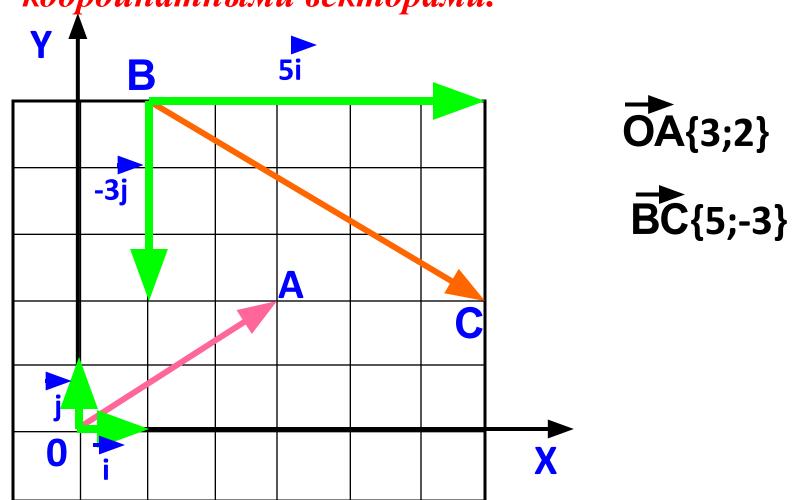
Координаты вектора



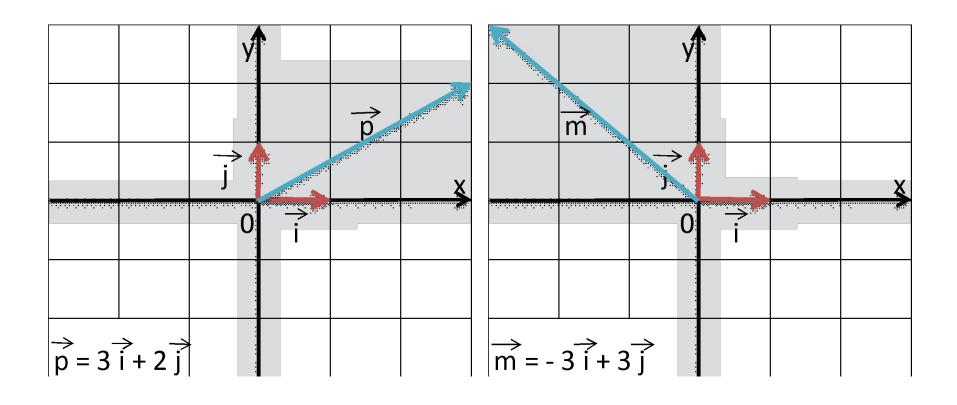
Координатные векторы і и ј – единичные векторы (длина равна 1); і – по оси Ох, ј – по оси Оу



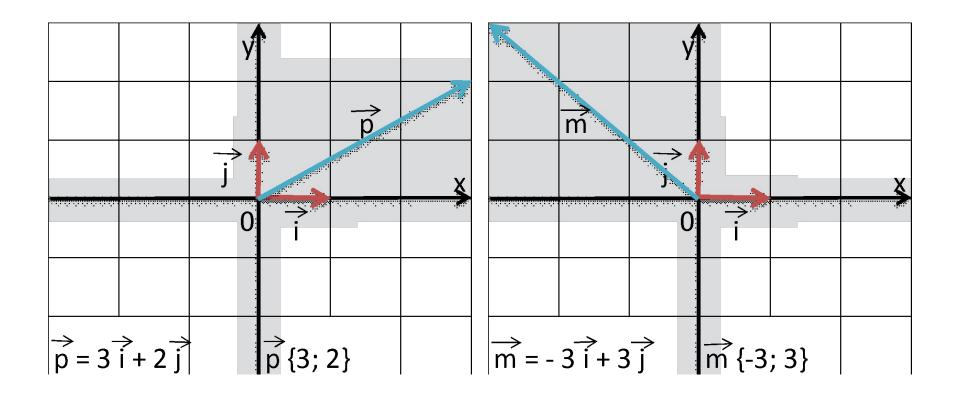
Отложим от начала координат О единичные векторы і и ј так, чтобы направление вектора ј совпало с направлением оси Ох, а направление вектора ј — с направлением оси Оу. Векторы і и ј назовем координатными векторами.



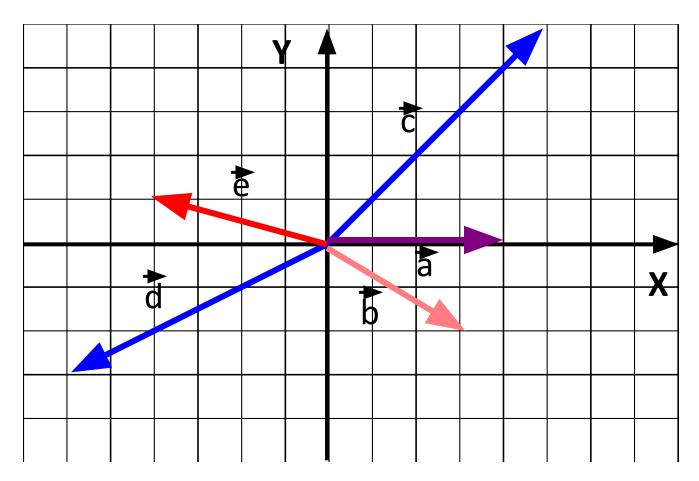
Любой вектор можно разложить по координатным векторам



Коэффициенты разложения называются координатами вектора



Начертите прямоугольную систему координат. Постройте векторы с началом в точке O, заданные координатами $a\{4;0\}$, $b\{3;-2\}$, $c\{5;5\}$, $d\{-6;-3\}$, $e\{-4;1\}$,



Каждая координата суммы векторов равна сумме соответствующих координат а {2;3} + b {1;4} = c {3;7}

2. Каждая координата разности векторов равна разности соответствующих

___ координат. a {2;3} - b {1;4} = c {1;-1}

3. Каждая координата произведения вектора на число равна произведению соответствующей координаты на это число если a {2;5}, то -4 a {-8;-20}

```
Задание: найти координаты
вектора p = 2a - 1/3b + c,
если а {1; -2}, b {0; 3}, c {-2; 3}
1) 2\overline{a} {1*2; -2*2}, 2\overline{a} {2; -4}
2) -1/3b\{0*(-1/3); 3*(-1/3)\},
- 1/3 b {0; -1}
3) \vec{c} {-2; 3}
4) \vec{p} {2+0-2; -4-1+3}, \vec{p} {0; -2}
```