Устройство учебной модели компьютера "E97"

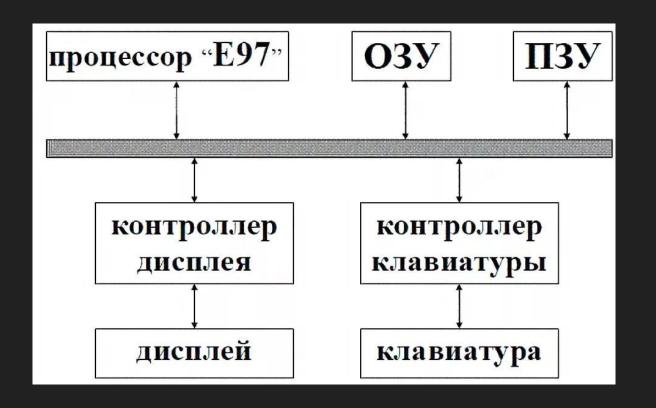
Происхождение

Автор хотел обобщить основные принципы работы современных ЭВМ и разработать новую модель, которая с одной стороны проста и наглядна, а с другой — способна заменить собой при обучении реальную ЭВМ. Модель получила краткое название "Е97"

Структура памяти

Память двух видов - <u>оперативная(ОЗУ)</u> и <u>постоянная(ПЗУ)</u>.

В первой хранится текущая информация по решаемой задаче, причем она может как считываться, так и записываться.


Во второй, предназначенной только для считывания, содержатся разработанные при проектировании ЭВМ подпрограммы.

Организация данных

Минимальной адресуемой ячейкой памяти в современных ЭВМ является байт. Все байты в памяти "Е97" пронумерованы и их 16-разрядные номера находятся в пределах от 0000 до FFFF.

Структура процессора

16-разрядный процессор "E97", способен работать как с двухбайтовыми словами, так и с отдельными байтами. В процессоре имеются внутренние регистры памяти, при помощи которых реализован метод косвенной адресации к ОЗУ. Полное 16-разрядное адресное пространство "E97" позволяет напрямую адресовать до 64 Кбайт памяти.

Способы адресации команд

Регистровый метод адресации: операнд является содержимым указанного регистра; Метод косвенной адресации: операндом является содержимое ячейки ОЗУ, адрес которой задан в указанном регистре;

Резерв; возможно, в будущих версиях здесь будет реализован индексный метод адресации; Адресация <u>по РС</u>: операнд извлекается с использованием информации, входящей в команду.

Система команд процессора

- 1 перепись
- 2 сложение
- 3 вычитание
- 4 сравнение
- 5 умножение
- 6 деление
- 7 логическое "И"
- 8 ИЛИ
- 9 ИСКЛЮЧАЮЩЕЕ ИЛИ
- А ввод из порта
- В вывод из порта.

Примеры программ на языке

процессора

ПРИМЕР 1. ОСТАТОК ОТ ДЕЛЕНИЯ

Целые числа A и B хранятся в регистрах R1 и R2. Вычислить результат деления нацело A div B и остаток от деления A mod B, поместив результаты в регистры R1 и R2 соответственно.

РЕШЕНИЕ. Для деления нацело в "E97" существует специальная команда. Что касается остатка от деления, то его можно вычислить по формуле

$A \mod B = A - B * (A \operatorname{div} B)$

При вычислениях для хранения промежуточных результатов используется регистр R0.

Адрес	Код	Операция	Комментарии
0000	0110	$R1 \Longrightarrow R0$	А скопировать в R0
0002	0621	$R1 \text{ div } R2 \Longrightarrow R1$	A div B
0004	0512	R2 * R1 ==> R2	B * (A div B)
0006	0320	R0 - R2 => R0	A - B * (A div B)
0008	0102	$R0 \Longrightarrow R2$	$A \mod B \Longrightarrow R2$
000A	0F00	останов	-El Cook

ПРИМЕР 2. ПОВЕРХНОСТЬ ПАРАЛЛЕЛЕПИПЕДА.

Вычислить полную поверхность параллелепипеда со сторонами А, В и С. Считать, что исходные значения находятся в ячейках ОЗУ. Результат также поместить в ячейку.

РЕШЕНИЕ. Как известно, полная поверхность параллелепипеда вычисляется по формуле

$$S = 2 * (A * B + A * C + B * C)$$

Для упрощения программы, выражение удобно представить в виде S = 2 * [A * (B + C) + B * C]

Запомним на будущее, что преобразование исходного выражения часто позволяет заметно сократить программу.

Адрес	Код	Операция	Комментарии
0000	01E0	(22) => R0	$B \Longrightarrow R0$
0002	0022		
0004	0101	R0 => R1	$B \Longrightarrow R1$
0006	02E0	R0 + (24) ==> R0	B+C
8000	0024		
000A	05E0	R0 * (20) => R0	A * (B + C)
000C	0020		
000E	05E1	R1 * (24) => R1	B * C
0010	0024		
0012	0210	R0 + R1 = > R0	A * (B + C) + B * C
0014	0200	R0 + R0 = > R0	2 * [A * (B + C) + B * C]
0016	010E	R0 = > (26)	результат ==> S
0018	0026		
001A	0F00	останов	
0020	0002		A
0022	0003		В
0024	0004		C
0026	0034		S