Macroeconomics

Class 8. More about Solow model Sinking into memories: A general production function in the Solow growth model

• Consider a general production function

Y = F(L, K)

• This is a "neoclassical" production function if there are positive and diminishing returns to K and L; if there are constant returns to scale (CRS); and if it obeys the Inada conditions:

 $f(0) = 0; f'(0) = \infty; \lim_{k \to \infty} f'(k) = 0$

• with CRS, we have output per worker of

Y/L = F(1, K/L)

If we write K/L as k and Y/L as y, then in *intensive form*:

$$y = f(k)$$

Sinking into memories: The Cobb-Douglas production function

 One simple production function that provides – as many economists believe – a reasonable description of actual economies is the *Cobb-Douglas*:

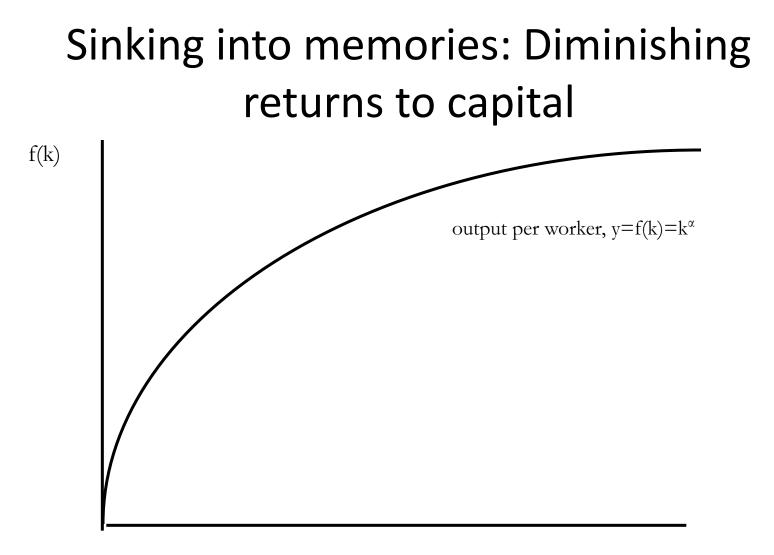
 $Y = AK^{\alpha}L^{1-\alpha}$

where A>0 is the level of technology and α is a constant with 0< α <1. The CD production function can be written in *intensive form* as

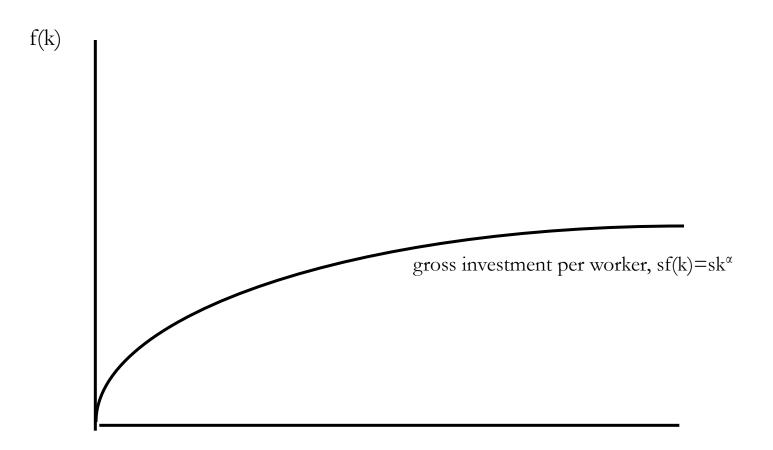
$$y = Ak^{\alpha}$$

The marginal product can be found from the derivative:

$$MPK = \frac{\partial Y}{\partial K} = \alpha A K^{\alpha - 1} L^{1 - \alpha} = \alpha \frac{A K^{\alpha} L^{1 - \alpha}}{K} = \alpha \frac{Y}{K} = \alpha A P K$$



Sinking into memories: The economy is saving and investing a constant fraction of income...



Sinking into memories: What is "labor-augmenting technical progress"?

• This is technical progress that increases contribution of labor into output!

Sinking into memories: If we take into account "labor-augmenting technical progress" that

We now write the production function as:

$$\boldsymbol{Y} = \boldsymbol{F}(\boldsymbol{K}, \boldsymbol{L} \times \boldsymbol{E})$$

- where L×E = the number of effective workers.
 - Hence, increases in labor efficiency have the same effect on output as increases in the labor force.

Sinking into memories: Production function with technical progress in the intensive form

- Notation:
 - y = Y/LE = output per effective worker k = K/LE = capital per effective worker
- Production function per effective worker:
 y = f(k)
- Saving and investment per effective worker:
 s y = s f(k)

Sinking into memories: What is break-even investment?

- (S + n + g)k = break-even investment: the amount of investment necessary to keep k constant.
 - Consists of:
 - δk to replace depreciating capital
 - **nk** to provide capital for new workers
 - g k to provide capital for the new "effective" workers created by technological progress

Sinking into memories: Derivation of equilibrium capital per effective worker

: ΔK (net investment) = I (gross investment) - $\delta \cdot K$ (depreciation

$$\Rightarrow \frac{\Delta K}{L \cdot E} = \frac{I}{L \cdot E} - \frac{\delta K}{L \cdot E} = i - \delta \cdot k = s \cdot f(k) - \delta \cdot k$$

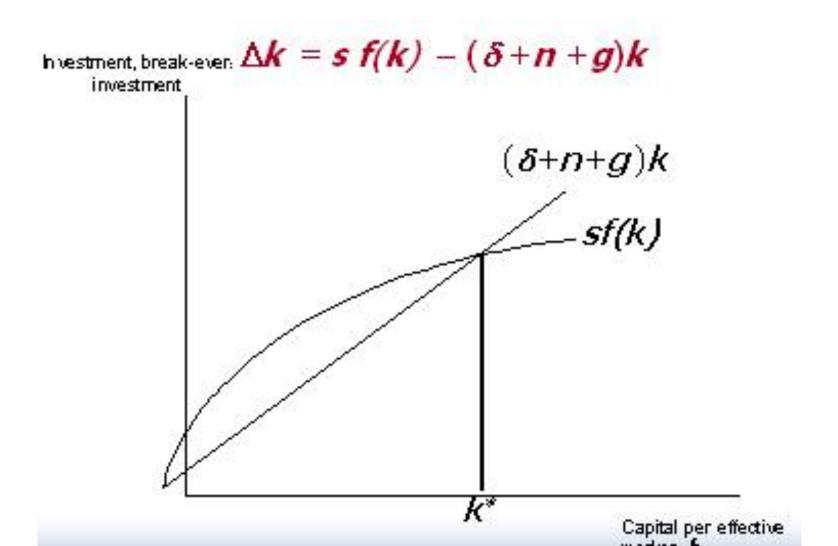
Since
$$\Delta k = \Delta (\frac{K}{L \cdot E}) = \frac{(L \cdot E)\Delta K - K(L \cdot \Delta E + E \cdot \Delta L)}{(L \cdot E)^2}$$

$$=\frac{\Delta K}{L\cdot E}-\frac{K}{L\cdot E}(\frac{\Delta L}{L}+\frac{\Delta E}{E})$$

 $= s \cdot f(k) - \delta \cdot k - k(n+g)$, where $\frac{\Delta L}{L} = n$, and $\frac{\Delta E}{E} = g$

 $\Rightarrow \Delta k = s \cdot f(k) - (\delta + n + g)k$

Sinking into memories: Equilibrium as a situation of steady-state growth



Sinking into memories: Dynamics of parameters on the steady-state

variable	symbol	Steady-state growth rate	
Capital per effective worker	$\boldsymbol{k} = \boldsymbol{K}/(\boldsymbol{L}\times\boldsymbol{E})$	0	
Output per effective worker	$\boldsymbol{y} = \boldsymbol{Y} / (\boldsymbol{L} \times \boldsymbol{E})$	0	
Capital per worker	$(K/L) = k \times E$	g	
Output per worker	$(Y/L) = Y \times E$	g	
Total output	$Y = y \times E \times L$	n + g	

Sinking into memories: Balanced growth

Solow model's steady state exhibits **balanced growth** - many variables grow at the same rate.

- Solow model predicts Y/L and K/L grow at same rate (g), so that K/Y should be constant. This is true in the real world.
- Solow model predicts real wage grows at same rate as Y/L, while real rental price is constant.
 Also true in the real world.

Sinking into memories: Growth in steady state and outside steady state

- In the steady state when actual investment per "effective worker" = break-even investment - the rate of economic growth will be equal to the sum of rate of population growth and rate of technical progress = n+g.
- If "initial" capital stock is less than steady state capital stock, then the rate of economic growth will be more than n+g.

Sinking into memories: Unconditional convergence

- Solow model predicts that, other things equal, "poor" countries (with lower Y/L and K/L) should grow faster than "rich" ones.
- If true, then the income gap between rich & poor countries would shrink over time, and living standards "converge."
- In real world, many poor countries do NOT grow faster than rich ones. Does this mean the Solow model fails?

Sinking into memories: Conditional convergence

- No, because "other things" aren't equal.
 - In samples of countries with similar savings & pop. growth rates,
 - income gaps shrink about 2%/year.
 - In larger samples, if one controls for differences in saving, population growth, and human capital, incomes converge by about 2%/year.
- What the Solow model *really* predicts is conditional convergence - countries converge to their own steady states, which are determined by saving, population growth, and education. And this prediction comes true in the real world.

Sinking into memories: The concept of the Golden Rule

To find the Golden Rule capital stock, express c* in terms of k*:

$$c^* = y^* - i^*$$

= $f(k^*) - (\delta + n + g)k^*$

c^{*} is maximized when MPK = δ + **n** + **g**

or equivalently,

In the Golden Rule Steady State, the marginal product of capital net of depreciation equals the pop. growth rate plus the rate of tech progress.

Sinking into memories: The Golden Rule – for what?

- Use the Golden Rule to determine whether our saving rate and capital stock are too high, too low, or about right.
- To do this, we need to compare (MPK δ) to (n + g).
- If (MPK δ) > (n + g), then we are below the Golden Rule steady state and should increase s.
- If (MPK δ) < (n + g), then we are above the Golden Rule steady state and should reduce s.

Sinking into memories: Accounting of growth in Solow model (Part 1)

 Production Function (CRTS) Y = F(K, L)

 Increases in Capital and Labor ΔY = (MPK × ΔK) + (MPL × L)

 $\Rightarrow \frac{\Delta Y}{Y} = \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L}$ where α is capital's share and $(1 - \alpha)$ is labor's share.

Sinking into memories: Accounting of growth in Solow model (Part 2)

- Production Function with Technology Y = AF(K, L)
- Technological Progress

$$\frac{\Delta Y}{Y} = \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L} + \frac{\Delta A}{A}$$

Growth in = Contribution + Contribution + Growth in Total output of capital of labor + Factor Productivity

The above is the growth-accounting equation.

Sinking into memories: Accounting of growth in Solow model (Part 3)

Solow Residual

$$\frac{\Delta A}{A} = \frac{\Delta Y}{Y} - \alpha \, \frac{\Delta K}{K} - (1 - \alpha) \, \frac{\Delta L}{L}$$

ΔA/A is the change in output that cannot be explained by changes in inputs. Thus, the growth in total factor productivity is computed as a residual – that is, as the amount of output growth that remains after we have accounted for the determinants of growth that we can measure. Indeed, ΔA/A is sometimes called the Solow residual, after Robert Solow, who first showed how to compute it.

Accounting of growth in the U.S. economy In the end of the XX century

(average	SOURCE OF GROWTH				
percentage, %, increase per year) Years	(отратаюта) Ду / у	$= \left(\begin{array}{c} capital \\ \alpha \Delta K/K \end{array} \right) + \left(\begin{array}{c} Labor \\ (1-\alpha)\Delta L/L \end{array} \right) + \left(\begin{array}{c} c \\ \end{array} \right)$		Total Factor Piccluctly by $\Delta A / A$	
1950-1960	3.5	1.1	0.8	1.6	
1960-1970	4.1	1.2	1.3	1.7	
1970-1980	3.1	0.9	1.6	0.5	
1980-1990	2.9	0.8	1.3	0.8	
1990-1996	2.2	0.6	0.8	0.8	
1950-1996	3.2	0.9	1.2	1.1	

Accounting of growth among "Asian Tigers" In the end of the XX century

%	Hong Kong (1966-1991)	Singapore (1966-1990)	South Korea (1966-1990)	Taiwan (1966-1990)
GDP per capita growth	5.7	6.8	6.8	6.7
TFP' growth	2.3	0.2	1.7	2.6
∆% labor force participation	38-49	27→51	27→36	28-→37
∆% secondary education or higher	27.2 →71.4	15.8→66.3	<mark>26.5→75.0</mark>	<mark>25.8-⊮67.6</mark>

*TFP: total factor productivity

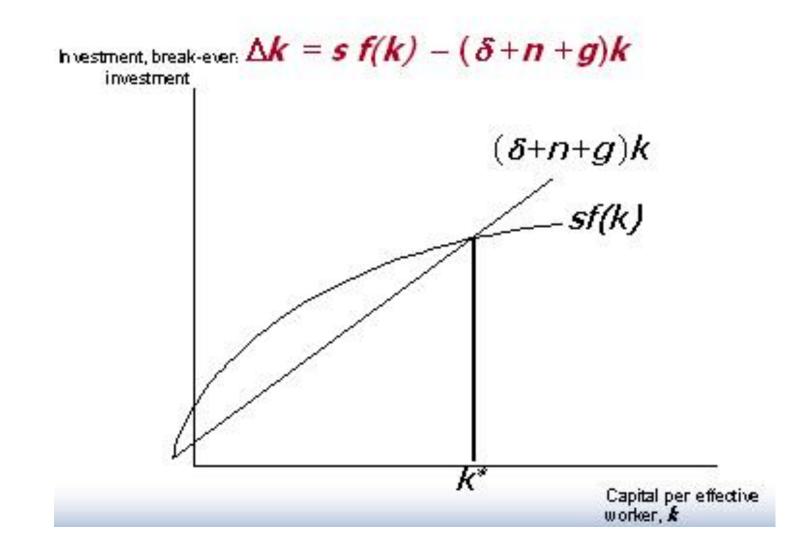
Source : Alwyn Young, "The Tyranny of Numbers: Confronting the Statistical Realities of the East Asian Growth Experience," *Quarterly Journal of Beanomics*, August 1995.

Exercise #1: the condition

The savings rate = 0.3; the rate of population growth = 0.03; the rate of technical progress = 0.02; the depreciation rate = 0.1. The production function is the Cobb-Douglas function with labor-augmenting technical progress, that is: $Y = K^{0.5}(LE)^{0.5}$

Calculate: Calculate equilibrium capital per effective worker ratio, amount of actual investment and amount of actual consumption.

Exercise #1: the solution: the graph



Exercise #1: the solution: the figures

1) If
$$Y = K^{0.5}(LE)^{0.5}$$

Then $y = k^{0.5}$
2) $sy = sk^{0.5} = (n + g + d)k$
 $0.3k^{0.5} = (0.03 + 0.02 + 0.1)k$
 $0.3k^{0.5} = 0.15k$; $2k^{0.5} = k$
 $k = 4$; $y = 2$
3) actual investment = savings = $s^*y = 0.3^*2 = 0.6$.
4) actual consumption = $y - s = 2 - 0.6 = 1.4$.

Exercise #2: the condition

The rate of population growth = 0.04; the rate of technical progress = 0.06; the depreciation rate = 0.08, capital per effective worker ratio = 4. The production function is the Cobb-Douglas function with labor-augmenting technical progress, that is: Y = $K^{0.5}(LE)^{0.5}$

Calculate: Calculate equilibrium savings rate, amount of actual investment and amount of actual consumption

Exercise #2: the solution:

1) If $Y = K^{0.5} (LE)^{0.5}$ Then $y = k^{0.5}$ 2) sy = $sk^{0.5} = (n + g + d)k$ $s^{*}4^{0.5} = (0.04 + 0.06 + 0.08)^{*}4$ s = 0.18*4 : 2 = 0.36 = 36%3) actual investment = savings = $s^*y = 0.36^*2 =$ 0.72. 4) actual consumption = y - s = 2 - 0.72 = 1.28.

Exercise #2: the additional question

Is this saving rate – 36% - consistent with the golden rule?

Exercise #2: reply to the additional question

Max c = (1 - s)y

If we take $\partial c/\partial s$ and make it equal to zero that it implies that $s = \alpha$ or s = 0.5

Exercise #3: the condition

The savings rate = 0.48; the rate of population growth = 0.04; the rate of technical progress = 0.03; the depreciation rate = 0.05. The production function is the Cobb-Douglas function with labor-augmenting technical progress, that is: $Y = K^{0.5}(LE)^{0.5}$

Calculate: Calculate equilibrium capital per effective worker ratio, amount of actual investment and amount of actual consumption.

Exercise #4: the condition

The rate of population growth = 0.03; the rate of technical progress = 0.02; the depreciation rate = 0.07, capital per effective worker ratio = 36. The production function is the Cobb-Douglas function with labor-augmenting technical progress, that is: $Y = K^{0.5}(LE)^{0.5}$

Calculate: Calculate equilibrium savings rate, amount of actual investment and amount of actual consumption

Exercise #5: the condition

The production function is: $Y = AK^{0.4}L^{0.6}$

The rate of economic growth = 3.9%, the rate of capital accumulation = 3%, the rate of population growth = 2%.

Calculate Solow residual