Algebraic constructions generated by causal structure of space-times

> Stolbova V.A. Bauman Moscow State Technical University

Research advisor: Nikiforov A.M.

C^{*}-algebra is an involutive Banach algebra \mathfrak{A} satisfying $||A^*A|| = ||A||^2 \forall A \in \mathfrak{A}$.

Representation of a C*-algebra $\pi: C^* \to \mathfrak{B}(\mathcal{H})$ linear bounded operators on a
*-homomorphism \mathbb{C} -Hilbert space \mathcal{H}

Structure theorems for C^* - algebras

Gelfand-Naimark Theorem $HTop \simeq C^*Alg \bowtie_{lclC} abl$

- **1** Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5(7), 848–861 (1964)
- *Araki, H.: Mathematical Theory of Quantum Fields, vol. 101. Oxford UniversityPress, Oxford (1999)*

Haag-Kastler axioms

Isotony

• For $"U \subseteq 'U \exists$ an **embedding**

$$in_U^{U}: \mathfrak{A}(''U) \to \mathfrak{A}('U)$$

• For $''U \subseteq ''U \subseteq 'U$, the embedding satisfy **the consistency conditions**

$$in_{U}^{U} \boxtimes in_{U}^{U} = in_{U}^{U}$$
$$in_{U}^{U} \qquad in_{U}^{U}$$
$$\mathfrak{U}^{U} \qquad \mathfrak{U}^{U}$$

Haag-Kastler axioms

Microcausality (locality) Connected component of the Poincare group identity Π_{+}^{\uparrow} , is represented by authomorphisms $\rho_{(\Lambda,a)}$:

 $\mathfrak{A}{\rightarrow}\,\mathfrak{A}$

$$A \mapsto \rho_{(\Lambda,a)}(A)$$

such that

$$\rho_{(\Lambda,a)} \boxtimes in_{U}^{U} = in_{(\Lambda,a)}^{(\Lambda,a)} \boxtimes \rho_{(\Lambda,a)}$$
$$\rho_{(\Lambda,a)} \boxtimes \rho_{(\Lambda,a)} = \rho_{(\Lambda,a)}^{\boxtimes} \boxtimes \rho_{(\Lambda,a)}$$

 $\forall A \in \mathfrak{A}(''U)$ $''U \subseteq 'U$

$$[\mathfrak{A}(O_1), \mathfrak{A}(O_2)] = 0$$

 $O_1, O_2 - \text{spatially}$
separated diamonds

Haag-Kastler axioms

- Covariance
- $\boldsymbol{\rho}_{(\Lambda,a)}(\mathfrak{A}(\mathcal{O}))=\mathfrak{A}(\Lambda\mathcal{O}+a)$ $\forall (\Lambda,a) \in \prod_{+}^{\uparrow}$
- $\rho_{(\Lambda,a)} \in Aut(\mathfrak{A})$

Haag-Kastler axioms

- Spectrum condition
- $spec(P_{\beta}) \subset \overline{V_+}$
- P_{β} generators of translations

Minkowski space-time

$$x \times x \circ h_{ab} x^{a} x^{b}$$

$$a, b = \overline{0, D-1}$$

$$(h_{ab}) \circ diag(+, -, -, ..., -)$$

the family of upper cones

$$\operatorname{Con}(M_1^D) \circ \overset{1}{[]} \mathcal{A}, \operatorname{Con}_x x^{\dagger} x \stackrel{1}{[]} M_1^D, x \times x^3 = 0, x^0 \overset{1}{3} \overset{1}{0} \overset{1}{y}$$

 $\frac{x}{con(x)}$

the family of *lower* cones

$$Con(M_1^D) \circ \overset{\stackrel{\stackrel{\stackrel{}}{}}{\downarrow}}{\mathcal{A}}, \ con_x x | x \, \hat{1} \ M_1^D, x \times x^3 \ 0, x^0 \, \hat{\mathbf{E}} \ 0 \overset{\stackrel{\stackrel{\stackrel{\stackrel{}}{}}{\downarrow}}{p}$$

Operations on upper cones

addition

$$\overset{+}{\mathsf{U}}: \overset{+}{Con} (M_1^D)' \overset{+}{Con} (M_1^D) \circledast \overset{+}{Con} (M_1^D)$$

$$\overset{+}{\underset{x}{\overset{\circ}{\mathsf{Con}}}} \overset{+}{\underset{y}{\overset{\circ}{\mathsf{Con}}} \overset{+}{\underset{x}{\overset{\circ}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{\circ}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{\circ}{\mathsf{Con}}} \overset{+}{\underset{x}{\overset{\circ}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{\circ}{\mathsf{Con}}} \overset{+}{\underset{x}{\overset{\circ}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{\circ}{\mathsf{Con}}} \overset{+}{\underset{x}{\overset{s}{\mathsf{Con}}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{z}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{z}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{x}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{z}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{z}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{z}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}} \overset{+}{\underset{y}{\overset{+}{\mathsf{Con}}}} \overset{+}{\underset{y}{\overset{+}{{}}}} \overset{+}{\underset{y}{\overset{+}{{}}}} \overset{+}{\underset{y}{\overset{+}{{}}}} \overset{+}{\underset{y}{\overset{+}{{}}}} \overset{+}{\underset{y}{\overset{+}}} \overset{+}{\underset{y}{\overset{+}}}} \overset{+}{\underset{y}{\overset{+}}} \overset{+}{\underset{y}{\overset{+}}} \overset{+}{\underset{y}{\overset{+}}{\underset{y}{\overset{+}}}} \overset{+}{\underset{z}{\overset{+}}} \overset{+}{\underset{y}{\overset{+}}} \overset{+}{\underset{z}{\overset{+}}} \overset{+}{\underset{z}{\overset{+}}} \overset{+}{\underset{y}{\overset{+}}} \overset{+}$$

multiplication

$$\dot{\check{\mathbf{U}}}: \overset{+}{Con} \left(M_{1}^{D} \right)' \overset{+}{Con} \left(M_{1}^{D} \right) \overset{+}{\otimes} \overset{+}{Con} \left(M_{1}^{D} \right) \overset{+}{\otimes} \overset{+}{Con} \left(M_{1}^{D} \right)$$

$$\overset{\overset{+}{\otimes}}_{x} \overset{+}{y} \overset{+}{\otimes} \overset{+}{o} \overset{+}{con} \overset{+}{\underset{x}} \overset{+}{v} \overset{+}{y} \overset{+}{o} \overset{+}{con} \overset{+}{\underset{x}} \overset{+}{v} \overset{+}{y} \overset{+}{v} \overset{+}{o} \overset{+}{con} \overset{+}{\underset{y}} \overset{+}{o} \overset{+}{\underset{y}} \overset{+}{o} \overset{+}{con} \overset{+}{\underset{y}} \overset{+}{o} \overset{+}{o} \overset{+}{\underset{y}} \overset{+}{o} \overset$$

Addition and multiplication on upper cones. Properties

• idempotency	$ \begin{array}{cccc} + & + & + & + \\ con & C & con & con \\ x & x & x \end{array} & \left(\begin{array}{cccc} Notation & \left(\overset{+}{U}, \overset{+}{U} \right) \right) = \overset{+}{C} \end{array} $
• commutativity	$\begin{bmatrix} + & + & + & + & + & + \\ con & C & con & con & C & con \\ x & y & y & x \end{bmatrix} \begin{bmatrix} x, y \hat{1} & M_1^D \end{bmatrix}$
• associativity	$\begin{array}{c} \underbrace{\overset{\bullet}{\mathbf{c}}}_{x} + & + & \overset{\bullet}{\mathbf{c}} \\ \underbrace{\overset{\bullet}{\mathbf{c}}}_{x} & \overset{\bullet}{\mathbf{c}} & \overset{\bullet}{\mathbf{c}} \\ \underbrace{\overset{\bullet}{\mathbf{c}}}_{x} & \overset{\bullet}{\mathbf{c}} \\ \underbrace{\overset{\bullet}{\mathbf{c}}}_{y} & \overset{\bullet}{\mathbf{c}} \\ \underbrace{\overset{\bullet}{\mathbf{c}}}_{x} & \overset{\bullet}{\mathbf{c}} \\ \underbrace{\overset{\bullet}{\mathbf{c}}}_{y} & \overset{\bullet}{\mathbf{c}} \\ \end{aligned}{\overset{\bullet}{\mathbf{c}}}_{y} & \overset{\bullet}{\mathbf{c}} & \overset{\bullet}{\mathbf{c}}$
• absorption identity	$ \begin{array}{c} \stackrel{+}{con} \stackrel{+}{U} \\ x \\ x \\ x \\ y \\ y \\ x \\ y \\ y \\ y \\ y$
$x \qquad y \qquad = \qquad x \qquad = \qquad x \qquad y$	

Distributivity of the obtained lattice

Bijection of distributive lattices $\begin{bmatrix} \mathbf{P}^+\\ \mathbf{C}on(M_1^D), \dot{\mathbf{U}}, \dot{\mathbf{U}} \end{bmatrix} \stackrel{+}{\overset{\bullet}{\mathbf{B}}} and \begin{bmatrix} \mathbf{P}^-\\ \mathbf{C}on(M_1^D), \dot{\mathbf{U}}, \dot{\mathbf{U}} \end{bmatrix}$

Bijection T transforms one cone into another without changing the vertex

 $\frac{con}{x}$

 $T \underbrace{\overset{\overset{\bullet}}{\underset{x}}}_{con} \overset{\overset{+}}{\overset{\downarrow}} \overset{\overset{+}}{\underset{v}} \overset{\overset{\bullet}}{\underset{v}} \overset{\overset{+}}{\underset{v}} \overset{\overset{\bullet}}{\underset{v}} = T \underbrace{\overset{\overset{\bullet}}{\underset{x}}}_{con} \overset{\overset{-}}{\underset{v}} \overset{\overset{+}}{\underset{v}} \overset{\overset{\bullet}}{\underset{v}} \overset{\overset{\phantom}}{\underset{v}} \overset{\overset{\overset{\bullet}}}{\underset{v}} \overset{\overset{\overset{\bullet}}}{\underset{v}} \overset{\overset{\overset{\phantom}}}{\underset{v}} \overset{\overset{\overset{\bullet}}}{\underset{v}} \overset{\overset{\overset{\phantom}}}{\underset{v}} \overset{\overset{\overset{\phantom}}}{\underset{v}} \overset{\overset{\overset{\phantom}}}{\underset{v}} \overset{\overset{\overset{\phantom}}}{\underset{v}} \overset{\overset{\phantom}}{\underset{v}} \overset{\overset{\phantom}}}{\underset{v}} \overset{\overset{\phantom}}{\underset{v}} \overset{\overset{\phantom}}{\underset{v}} \overset{\overset{\phantom}}}{\underset{v}} \overset{\overset{\phantom}}{\underset{v}} \overset{\overset{\phantom}}{\underset{v}} \overset{\overset{\phantom}}}{\underset{v}} \overset{\overset}}{\underset{v}} \overset{\overset{\phantom}}}{\underset{v}} \overset{\overset{\phantom}}{\underset{v}} \overset{\overset}}{\underset{v}} \overset{\overset}}{\underset{v}} \overset{\overset}}{\underset{v}} \overset{\overset}}{\underset{v}} \overset{\overset}}{\underset{v}} \overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}} \overset{\overset}}{\underset{v}} \overset{\overset}}{\underset{v}} \overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}} \overset{\overset}}{\overset{\overset}}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\overset{\overset}}}{\underset{v}} \overset{\overset}}{\overset{\overset}}}{\underset{v}}\overset{\overset}}{\overset{\overset}}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\overset{\overset}}}{\overset{v}}\overset{\overset}}{\underset{v}}\overset{\overset}}{\overset{\overset}}}\overset{\overset}}{\overset{\overset}}}{\overset{\overset}}}{\overset{\overset}}} \overset{\overset}}{\overset{\overset}}}\overset{\overset}}{\overset{\overset}}}{\overset{\overset}}}\overset{\overset}}{\overset{\overset}}{\overset{\overset}}}{\overset{\overset}}}\overset{\overset}}{\overset{\overset}}}\overset{\overset}}{\overset{\overset}}}{\overset{\overset}}}\overset{\overset}}{\overset{\overset}}{\overset{\overset}}{\overset{\overset}}}{\overset{\overset}}}{\overset{\overset}}}{\overset{\overset}}}{\overset{\overset}}}\overset{\overset}}}{\overset{\overset}}}$ $T \underbrace{\overset{\bullet}{\overset{\bullet}}}_{x} \overset{\bullet}{\overset{\bullet}} \overset{\bullet}{\overset{\bullet}}$ $con \int_{x}^{+} con \oint_{y}^{+} T \underbrace{con}_{x}^{+} \stackrel{\circ}{\to} T \underbrace{con}_{x}^{+} \stackrel{\circ}{\to} T \underbrace{con}_{y}^{+} \stackrel{\circ}{\to} T \underbrace{con}_{y}^{+}$ x Y x y

$$\dot{\mathsf{U}}: Dmd\left(M_{1}^{D}\right)^{r} Dmd\left(M_{1}^{D}\right) \circledast Dmd\left(M_{1}^{D}\right)$$

$$\overset{\mathfrak{S}}{\underset{x}{\mathfrak{S}}} \overset{\mathfrak{S}}{\underset{x}{\mathfrak{S}}} \overset{\mathfrak{S}}{} \overset{\mathfrak{S}}{} } \overset{\mathfrak{S}}{\underset{s}}{} \overset{\mathfrak{S}}{}}$$

multiplication

$$\dot{\mathbf{U}}: Dmd\left(M_{1}^{D}\right)^{\prime} Dmd\left(M_{1}^{D}\right)^{\ast} Dmd\left(M_{1}^{D}\right)$$

$$\overset{\overset{\overset{\overset{\overset{}}}{\overset{}}}{\overset{\overset{}}{\overset{}}} \overset{\overset{\overset{}}{\overset{}}}{\overset{\overset{}}{\overset{}}} \overset{\overset{\overset{}}{\overset{}}}{\overset{\overset{}}{\overset{}}} \overset{\overset{\overset{}}{\overset{}}}{\overset{\overset{}}{\overset{}}} \overset{\overset{\overset{}}{\overset{}}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}}{\overset{}} \overset{\overset{}}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}}{\overset{}} \overset{\overset{}}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}}{\overset{}} \overset{\overset{}}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}{\overset{}}}{\overset{}}} \overset{\overset{}}{\overset{}}} \overset{\overset{}}}{\overset{}} \overset{\overset{}}}{\overset{}}} \overset{\overset{}}}{\overset{}} \overset{\overset{}}}{\overset{}} \overset{\overset{}}}{\overset{}} \overset{}}{\overset{}}} \overset{\overset{}}{\overset{}}} \overset{}}{\overset{}}} \overset{\overset{}}}{\overset{}}} \overset{\overset{}}}{\overset{}}}{\overset{\overset{}}}{\overset{}}} \overset{\overset{}}}{\overset{}}} \overset{\overset{}}}{\overset{}}} \overset{\overset{}}}{\overset{}}} \overset{\overset{}}}{\overset{}}}\overset{\overset{}}}{\overset{}}}\overset{}}{\overset{}}}{\overset{}}}\overset{\overset{}}}{\overset{}}} \overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}} \overset{}}}{\overset{}}} \overset{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}$$

Addition and multiplication on diamonds. Properties

- *idempotency*
- commutativity
 - associativity
 - absorption identity

'y

dmd

x

'x

y y У Ú, Ù = C dmd C dmd ° Notation dmd x x X "y "y 'y 'y $x, y \hat{\mathbf{I}} M_1^D$ 0 dmd C dmd dmd C dmd 'x"*x* "*x* 'x $\begin{array}{c} \overset{\text{e}}{\overleftarrow{}} y & \overset{\text{y}}{\overleftarrow{}} \\ \overset{\text{g}}{\overleftarrow{}} dmd & \overset{\text{y}}{\overleftarrow{}} \\ \overset{\text{y}}{\overleftarrow{}} x & \overset{\text{y}}{\overleftarrow{}} \\ \overset{\text{y}}{\overleftarrow{}} x & \overset{\text{y}}{\overleftarrow{}} \end{array} \begin{array}{c} \overset{\text{y}}{\overleftarrow{}} y & \overset{\text{y}}{\overleftarrow{}} \\ \overset{\text{y}}{\overleftarrow{}} & \overset{\text{y}}{\overleftarrow{}} \\ \overset{\text{y}}{\overleftarrow{}} x & \overset{\text{y}}{\overleftarrow{}} \end{array} \right)$ **æ** 'y dmd Ù dmd Ú dmd Ú "y Ö dmd:-"x Ø 'y dmd ° \mathbf{x} ''y ''y "v 'y "v 'y dmd dmd dmd dmd \mathbf{x} 'x*''x* "x **'**x

The distributive identities for the introduced operations: addition = "union" and multiplication=" intersection" hold only when the involved intersections of diamonds are nonempty

The distributive identities for the introduced operations: addition = "union" and multiplication="intersection" hold only when the involved intersections of diamonds are nonempty

Thank you for your attention!