BINDING EVENT
HANDLERS

eeeeeeeee

THIS IN EVENT HANDLERS

When you define a Component using export default BindingDemonstration Component {

an , @ common pattern is for an (props) {
(props)
event handler to be a method on the
.Sstate =
class. counter: © .
} Don't forget to bind

If you forget to bind this. clickHandler } event handler!

)))) clickHandler() {
and pass it to onClick, this will be .setState(prevState ({counter: prevState.counter + 1}))

}

undefined when the function is actually

render() {
called. return (

Counter: .state.counter
onClick= .clickHandler}>Click me

BINDING IN RENDER

We can bind in render method. export default BindingDemonstration Component {

, , _ (props) {
The problem with this syntax is that a (props)

different callback is created each time .state = {

.) . counter: ©
the BindingDemonstration renders. In }

}

clickHandler() {
.setState(prevState ({counter: prevState.counter + 1}))

most cases, this is fine.

However, if this callback is passed as a)

render() {
return (

prop to lower components, those

components might do an extra

Counter: .state.counter

re'rer"jernjg' onClick= .clickHandler.bind()}>Click me

ARROW FUNCTIOB IN RENDER

We can create an arrow function export default

in render method. (props) {
(props)

The problem with this syntax is

.state
counter:

{
0

the same as with binding in

}

}
render.

clickHandler() {
.setState(prevState

}

render() {
return (

Counter:
onClick={()

BindingDemonstration

Component {

({counter: prevState.counter + 1}))

.state.counter

.clickHandler()}>Click me

BINDING IN CONSTRUCTOR

export default BindingDemonstration Component {

Binding event handler in

(props) {
constructor is considered to be (props)

a good practice. .state = {
counter: @

.clickHandler = .clickHandler.bind();
}

clickHandler() {
.setState(prevState ({counter: prevState.counter + 1}))

}

render() {
return (

Counter: .state.counter
onClick= .clickHandler}>Click me

PUBLIC CLASS FIELDS SYNTAX

export default BindingDemonstration Component {

Defining event handler as a public

(props) {
(props)

good practice. state = {

class field is also considered to be a

counter: ©

}
}

clickHandler = () {
.setState(prevState ({counter: prevState.counter + 1}))

}

render() {
return (

Counter: .state.counter
onClick= .clickHandler}>Click me

