




Углеводороды — органические соединения, состоящие исключительно из атомов углерода и водорода. Углеводороды считаются базовыми соединениями органической химии, все остальные органические соединения рассматривают как их производные.

Поскольку углерод имеет четыре валентных электрона, а водород — один, простейший углеводород — метан (CH_4).

Природные источники углеводородов

ископаемые

угли

биога МуShared

При систематизации углеводородов принимают во внимание строение углеродного скелета и тип связей, соединяющих атомы углерода. В зависимости от строения углеродного скелета углеводороды подразделяют на ациклические и карбоциклические. В зависимости от кратности углеродуглеродных связей углеводороды подразделяют на предельные (алканы) и непредельные (алкены, алкины, диены). Циклические углеводороды разделяют на алициклические и ароматические.

Характе- ристи- Угле- ки водороды	Общая формула	Первый гомолог	Вид гибриди- зации	Вид ковалентной связи	Дпина связи С-С, нм	Угол между связями	Характер- ный тип реакций	
Апканы	C _n H _{2n+2}	Н Н-С-Н Н	sp3	σ _{C-C}	0,154	109°28′	Замещение, разпожение (крекинг)	
Цикло- алканы	C _n H _{2n}	н Н	sp ³	σ _{C-C}	0,154	С ₃ ,С ₄ меньше 109°	Присоеди- нение	
		H,C,C,H				С ₅ ,С ₆ ит.д. ≈109°28′	Замещение	
Апкены	C _n H _{2n}	HC=C H	sp ²	σ _{C-C} σ _{C-H} π _{C-C}	0,134	120°	Присоеди- нение	
Алкадиены (сопряженные)	C _n H _{2n-2}	CH ₂ =CH CH=CH ₂	sp ²	σ _{C-C} , σ _{C-H} 4πэпектронное сопряжение	0,135; 0,148	120°	Присоеди- нение (1,2- н 1,4-)	
Алкины	C _n H _{2n-2}	н−с≡с−н	qz	σ _{C-C} σ _{C-H} 2π _{C-C}	0,120	180°	Присоеди- нение	
Арены	C _n H _{2n-6}	н-с С-с н н-с С-с н	sp ²	σ _{C-C} , σ _{C-H} бл эпектронное сопряжение в цикле	0,140	120°	Замещение	
Углеводороды, как правило, не смешиваются с водой, поскольку атомы углерода и водорода имеют близкую электроотрицательность, и связи в углеводородах малополярны. Для предельных углеводородов характерны химические реакции замещения, а для непредельных — присоединения.								

Формулы

$C_{n}H_{2n+2}$	C_nH_{2n}	C_nH_{2n-2}
CH_4 — метан C_2H_6 — этан C_3H_8 — пропан C_4H_{10} — бутан C_5H_{12} — пентан и т. д.	C_2H_4 — этилен C_3H_6 — пропилен C_4H_8 — бутилен C_5H_{10} — амилен и т. д.	C_2H_2 — ацетилен C_3H_4 — метилацетилен C_4H_6 — этилацетилен C_5H_8 — пропилацетилен и т. д.

Эмпириче ская формула	Структурная формула	Названи е	Формула одновалентн ого радикала*	Название радикала
CH ₄	Н	Метан	— CH ₃	Метил
	H—C—H			
	H			
C ₂ H ₆	CH ₃ —CH ₃	Этан	— C ₂ H ₅	Этил
C ₃ H ₈	CH ₃ — CH ₂ — CH ₃	Пропан	— C₃H ₇	Пропил
C ₄ H ₁₀	CH ₃ —(CH ₂) ₂ —CH ₃	Бутан	— C ₄ H ₉	Бутил
C ₅ H ₁₂	CH ₃ —(CH ₂) ₃ —CH ₃	Пентан	— C ₅ H ₁₁	Пентил
C ₆ H ₁₄	CH ₃ —(CH ₂) ₄ —CH ₃	Гексан	— C ₆ H ₁₃	Гексил
C ₇ H ₁₆	CH ₃ —(CH ₂) ₅ —CH ₃	Гептан	— C ₇ H ₁₅	Гептил
C ₈ H ₁₈	CH ₃ — (CH ₂) ₆ — CH ₃	Октан	— C ₈ H ₁₇	Октил
C ₉ H ₂₀	CH ₃ — (CH ₂) ₇ — CH ₃	Нонан	— С ₉ Н ₁₉	Нонил
C ₁₀ H ₂₂	CH ₃ — (CH ₂) ₈ — CH ₃	Декан	— C ₁₀ H ₂₁	Децил