
Рецепторы лекарственных веществ, сопряженные с G-белками

Васильева И.А. 3.3.42a

- G-белок-связанный рецептор представляют собой белки, интегрированные в плазматическую мембрану и состоящие из связки семи гидрофобных спиралей, проходящих через нее. При этом N-концевые участки спиралей находятся вне клетки, а C-концевые со стороны цитозоля.
- Связывание агониста с внеклеточной стороны рецептора вызывает перегруппировку спиралей, в результате которой меняется структура сайта связывания для гетеротримера G-белка со стороны цитоплазмы, и эта измененная конформация связывающей поверхности G-белка способствует его активации

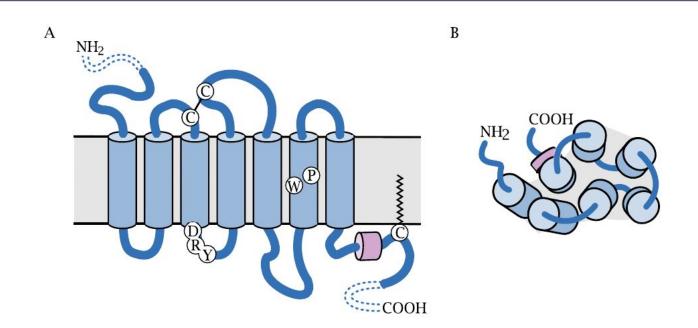
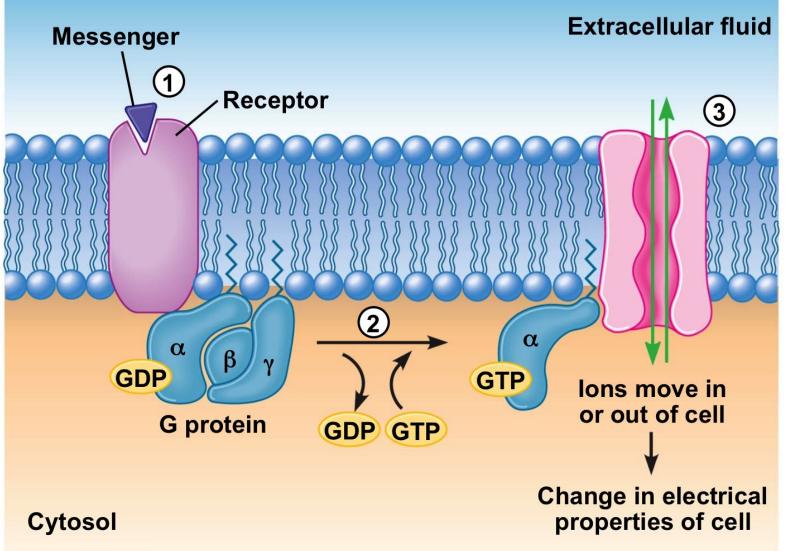
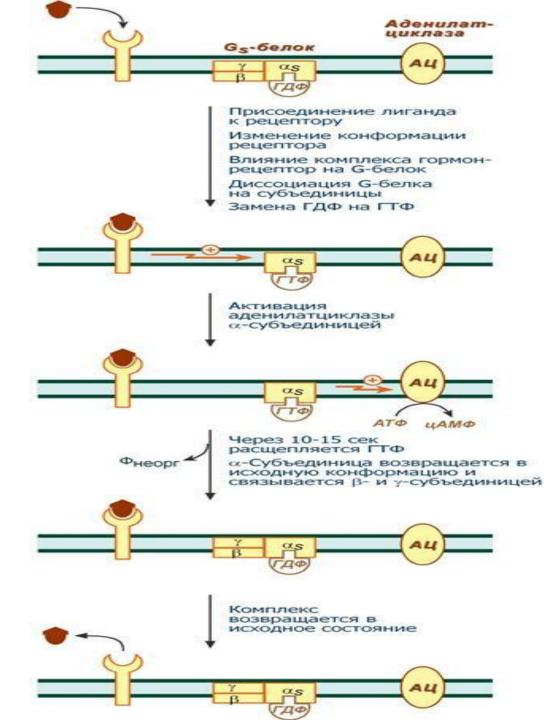



Figure 5.16 Action of a G protein on a slow ligand-gated ion channel.


К наиболее распространённым клеточным рецепторам этого типа относят вазопрессиновые и ангиотензиновые, α-адренорецепторы, β-адренорецепторы и м-холинорецепторы, опиатные и дофаминовые. Все вышеперечисленные рецепторы - мишени ЛС, составляющих обширные фармакологические группы.

Различают два типа рецепторов к **вазопрессину**, посредством которых он оказывает действие, – V1 (A- и B-подтипы) и V2.

Вазопрессиновые рецепторы связаны с гетеротримерными Gq-белками и стимулируют фосфолипазно-кальциевый механизм передачи гормонального сигнала. Они представлены во многих клетках периферических органов и тканей.

- V1A-рецепторы локализованы в гладких мышцах сосудов и в печени, а также в центральной нервной системе.
- V1B-рецепторы экспрессируются в передней доле гипофиза (аденогипофизе) и головном мозге, где вазопрессин выступает в роли нейромедиатора.
- V2-рецепторы связаны с Gsбелками и стимулируют аденилатциклазный механизм передачи гормонального сигнала, локализованы преимущественно в почках

(Десмопрессин – синтетический аналог человеческого гормона вазопрессина, который способствует концентрированию мочи в ночное время за счет воздействия на специфические V2- рецепторы в дистальных канальцах почек.)

 Аденилатциклазный механизм передачи сигнала Антагонисты рецепторов ангиотензина II, или блокаторы AT₁-рецепторов — одна из новых групп антигипертензивных средств. Она объединяет лекарственные средства, модулирующие функционирование ренин-ангиотензинальдостероновой системы (РААС) посредством взаимодействия с ангиотензиновыми рецепторами.

К настоящему времени установлено существование нескольких подтипов ангиотензиновых рецепторов: AT_{p} , AT_{2} , AT_{3} и AT_{4} и др.

АТ₁-рецепторы локализуются в различных органах и тканях, преимущественно в гладкой мускулатуре сосудов, сердце, печени, коре надпочечников, почках, легких. Большинство физиологических эффектов ангиотензина II, включая и неблагоприятные, опосредуется АТ₁-рецепторами:повышение гидравлического давления в почечных клубочках, усиление реабсорбции натрия в проксимальных почечных канальцах, секреция альдостерона корой надпочечников, пролиферация гладкомышечных клеток сосудов, гиперплазия интимы, гипертрофия кардиомиоцитов, стимуляция процессов ремоделирования сосудов и сердца. Эффекты ангиотензина II, опосредуемые AT₂-рецепторами, были обнаружены лишь в последние годы. Большое количество в тканях плода (в т.ч. и в мозге). В постнатальном периоде количество АТ2-рецепторов в тканях человека уменьшается

Для адренорецепторов характерна разная чувствительность к химическим соединениям, и поэтому их делят на α (α1, α2) и β (β1, β2, β3). Как правило, при стимуляции α-адренорецепторов обычно наблюдается усиление функции эффекторного органа, а при возбуждении β-адренорецепторов — снижение. Таким образом, эффект раздражения симпатических нервов зависит от количественного соотношения в тканях α- и β-адренорецепторов.

- <u>α1-адренорецепторы</u> находятся в сосудах кожи, почек, кишечника, сердца и др., в селезенке, радиальной мышце радужки. При их возбуждении происходит спазм и сокращение.
- <u>α2-адренорецепторы</u> находятся на пресинаптической мембране синапсов симпатической нервной системы, в ЦНС. При их возбуждении снижается высвобождение норадреналина и угнетение сосудодвигательного центра.
- <u>β1-адренорецепторы</u> расположены в миокарде, синусовом узле, атриовентрикулярном узле, печени и скелетных мышцах. При их возбуждении происходит увеличение силы сердечных сокращений, повышение возбудимости и проводимости, стимуляция гликогенолиза.
- <u>β2-адренорецепторы</u> находятся в артериолах скелетных мышц, печени, коронарных сосудах и др., в бронхах, матке, жировой ткани, на пресинаптической мембране синапсов симпатической нервной системы. При их возбуждении происходит расслабление сосудов, снижается тонус.

Препараты, стимулирующие адренорецепторы, называют адреномиметиками, а угнетающие — адреноблокаторами (адренолитиками)

Адреномиметики

По преимущественному влиянию на α- или β-адренорецепторы адреномиметики подразделяют на:

- *а-адреномиметики* (средства, преимущественно стимулирующие а адренорецепторы);
- *β-адреномиметики* (средства, преимущественно стимулирующие β адренорецепторы);
- α-, *β-адреномиметики* (средства, стимулирующие а и β-адренорецепторы).

α-Адреномиметики

По преимущественному влиянию на a_1 - или a_2 -адренорецепторы делят на a_1 -адреномиметики и a_2 -адреномиметики.

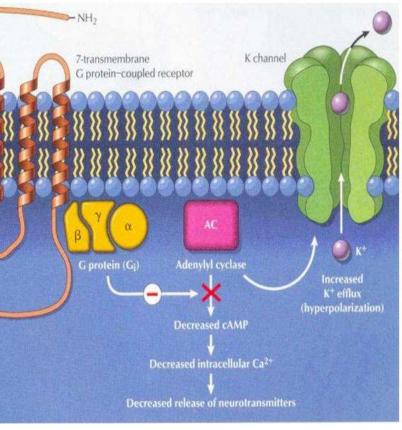
• α₁-Адренорецепторы локализованы на постсинаптической мембране эффекторных клеток, получающих симпатическую иннервацию: гладкомышечных клеток сосудов, радиальной мышцы радужки, сфинктера мочевого пузыря, простатической части уретры, предстательной железы.

Стимуляция α_1 -адренорецепторов (связанных с Gg-белками) вызывает сокращение гладких мышц

\checkmark α_{γ} -Адреномиметики (стимуляторы α_{γ} -адренорецепторов)

• а₂-Адренорецепторы находятся в сосудах в основном вне синапсов. Стимуляция внесинаптических а₂-адренорецепторов (связанных с G₂-белками, угнетающими аденилатциклазу) уменьшает уровень цАМФ и активность протеинкиназы А. В результате повышается активность киназы легких цепей миозина и фосфорилирование легких цепей миозина под действием этого фермента, что облегчает взаимодействие актина с миозином и приводит к сокращению гладких мышц кровеносных сосудов.

- β_1 -Адренорецепторы преимущественно локализованы в сердце в мембране кардиомиоцитов. Стимуляция β_1 -адренорецепторов (связанных с G_s белками) приводит к \uparrow поступления Ca^{2+} в кардиомиоциты через кальциевые каналы \rightarrow концентрация цитоплазматического $Ca^2 \uparrow \rightarrow \text{ЧСС} \rightarrow \text{облегчение}$ атриовентрикулярной проводимости и повышению автоматизма, повышается также автоматизм волокон Пуркинье.
- В клетках рабочего миокарда кальций связывается с тропонином С(является составной частью тропонин-тропомиозинового комплекса). При этом происходит изменение конформации комплекса и устраняется его тормозное влияние на сократительные белки миокарда, облегчается взаимодействие актина с миозином, что приводит к увеличению силы сердечных сокращений.


При стимуляции β_1 -адренорецепторов юкстагломерулярных клеток почек \uparrow секреция ренина \to повышается образование ангиотензина II.

- β_2 -Адреномиметики (стимуляторы β_2 -адренорецепторов)
- Внесинаптические β₂-адренорецепторы в основном находятся в мембранах гладкомышечных клёток бронхов, матки, кровеносных сосудов. При стимуляции этих рецепторов (связанных с Gs-белками, стимулирующими аденилатциклазу) происходит расслабление гладких мышц бронхов , ↓тонус и сократительная активность миометрия, расширяются кровеносные сосуды. Расслабление гладких мышц при стимуляции β₂-адренорецепторов связано с ↑ уровня цАМФ в гладкомышечных клетках, что приводит к активации цАМФ-зависимой протеинкиназы A, которая угнетает киназу легких цепей миозина → не происходит фосфорилирования легких цепей миозина и нарушается взаимодействие актина с миозином. Кроме того, при повышении уровня цАМФ в гладкомышечных клетках снижается концентрация кальция, что также приводит к снижению тонуса и сократительной активности гладких мышц.
- Стимуляторы β_2 -адренорецепторов одна из основных групп ЛС, применяемых при лечении бронхообструктивных заболеваний.

- **М-холиномиметики** стимулируют М-холинорецепторы, расположенные в мембране клеток эффекторных органов и тканей, получающих парасимпатическую иннервацию.
- М-холинорецепторы подразделяют на несколько подтипов, которые проявляют неодинаковую чувствительность к разным фармакологическим веществам $(M_1, M_2, M_3, \mathrm{M}_4, \mathrm{M}_5)$. Все М-холинорецепторы относятся к мембранным рецепторам, взаимодействующим с G-белками, а через них с определенными ферментами или ионными каналами.
- \mathbf{M}_1 -холинорецепторы также сопряжены с Gq-белками. Стимуляция \mathbf{M}_1 -холинорецепторов клеток желудка приводит к ув.концентрации цитоплазматического Ca^{2^+} и ув. секреции этими клетками гистамина. Гистамин в свою очередь, действуя на париетальные клетки желудка, стимулирует секрецию соляной кислоты.
- \mathbf{M}_2 -холинорецепторы мембран кардиомиоцитов взаимодействуют с G_i -белками, угнетающими аденилатциклазу. При их стимуляции в клетках \downarrow синтез цАМФ и, как следствие, активность цАМФ-зависимых протеинкиназ, фосфорилирующих белки. В кардиомиоцитах нарушается фосфорилирование кальциевых каналов, в результате меньше Ca^{2+} поступает в клетку во время деполяризации мембраны $\rightarrow \downarrow$ автоматизм синоатриального узла $\rightarrow \downarrow$ ЧСС
- при стимуляции M_2 -холинорецепторов активируются калиевые каналы и усиливается выход калия из клетки, что приводит к гиперполяризации мембраны и развитию тормозных эффектов

 $\mathbf{M_3}$ -холинорецепторы гладкомышечных клеток и клеток экзокринных желез взаимодействуют с \mathbf{Gq} -белками, которые активируют фосфолипазу С. При участии этого фермента из фосфолипидов клеточных мембран образуется инозитол-1,4,5трифосфат, который способствует высвобождению Ca²⁺ из саркоплазматического/эндоплазматического ретикулума (внутриклеточного депо кальция). В результате при стимуляции M_3 -холинорецепторов концентрация Ca^{2+} в цитоплазме клеток увеличивается, что вызывает повышение тонуса гладких мышц внутренних органов и увеличение секреции экзокринных желез. Кроме того, в мембране эндотелиальных клеток сосудов располагаются неиннервируемые (внесинаптические) М₃-холинорецепторы. При их стимуляции увеличивается высвобождение из эндотелиальных клеток эндотелиального релаксирующего фактора (NO), который вызывает расслабление гладкомышечных клеток сосудов. Это приводит к снижению тонуса сосудов и уменьшению АД.

Подтипы холиноре- цепторов	Локализация рецепторов	Эффекты, вызываемые стимуляцией холинорецепторов
М-холинореце	енторы	50 341N
M_1	ЦНС	
2000	Энтерохромаффиноподобные клетки желудка	Выделение гистамина, который стимулирует сек- рецию хлористоводородной кислоты паристальны- ми клетками желудка
M ₂	Сердце	Уменьшение частоты сердечных сокращений; Угнетение атриовентрикулярной проводимости; Снижение сократительной активности предсердий
	Пресинаптическая мембрана окончаний пос- тганглионарных парасимпатических волокон	Снижение высвобождения ацетилхолина
М ₃ (иннерви- руемые)	Круговая мышца радужной оболочки; Цилиарная (ресничная) мышца глаза;	Сокращение, сужение зрачков; Сокращение, спазм аккомодации (глаз устанавли- вается на ближнюю точку видения)
	Гладкие мышцы бронхов, желудка, кишечника, желчного пузыря и желчных протоков, мочевого пузыря, матки; Экзокринные железы (бронхиальные железы, железы желудка, кишечника, слюнные, слезные, носоглоточные и потовые железы)	Повышение тонуса (за исключением сфинктеров) и усиление моторики желудка, кишечника и мочево- го пузыря; Повышение секреции
М ₃ (неиннерви- руемые)	Эндотелиальные клетки кровеносных	Выделение эндотелиального релаксирующего фак- тора (NO), который вызывает расслабление глад- ких мышц сосудов

посредством G-белков ингибируют аденилатциклазу и тормозят синтез ц. АМФ; - вызывают гиперполяризацию мембран, открывая калиевые каналы (µ, б) и блокируя кальциевые каналы (к)

- Экзогенные опиоиды поступают в организм извне и связываются с опиоидными рецепторами. Первым открытым опиоидом был морфин. Механизм действия агонистов опиатных рецепторов заключается в стимулировании ими рецепторов: µ- (мю), к- (каппа) и δ- (дельта).
- Стимуляция µ-рецепторов приводит к возникновению супраспинальной анальгезии и эйфории, угнетению дыхания и формированию лекарственной зависимости (при длительном применении).
- Стимуляция к-рецепторов вызывает супраспинальную анальгезию, миоз, седацию.
- Все препараты этой группы обладают выраженным анальгезирующим действием.

Рецепторы	Локализация		Лиганды	Некоторые эффекты
Μιο (μ ₁ , μ ₂)	Головной мозг, спинной мозг, ЖКТ		β–Эндорфин	-угнетение дыхания; -эйфория; -спинальная анальгезия; -изменение моторики ЖКТ - зависимость (физ.>псих.)
Каппа (к _{1,2,3)}	Головной мозг, Периферические чувствительные нейроны		Энкефалины	-спинальная анальгезия; -угнетение дыхания (в < степени, чем μ_2); -миоз; -седация; -дисфория; -зависимость (псих.>физ.)
Дельта (δ _{1,2)}	Головной периферические чувствительные нейроны	мозг,	Динорфины	-незначительная анальгезия; -кардиопротекция

- **Дофаминовые** рецепторы присутствуют как в <u>центральной</u> нервной системе, так в периферических органах. *Дофаминомиметики.*
- 1) *непрямого* действия, влияющие на **пре**синаптические дофаминовые рецепторы, регулирующие синтез и выделение дофамина и норадреналина;
- отечественных препаратов относятся леводопа, мидантан и другие, стимулирующие синтез дофамина и предположительно задерживающие его разрушение, способствующие освобождению дофамина из гранул пресинаптических окончаний, применяемые для лечения болезни Паркинсона.
- 2) *прямого* действия, влияющие на **пост**синаптические дофаминовые рецепторы.
- психостимуляторы, обладающие дофаминергическими свойствами (фенамин (амфетамин)), способствующие освобождению дофамина и норадреналина из гранул пресинаптических нервных окончаний и тормозящие обратный нейрональный захват дофамина. Меридил (метилфенидат) психостимулятор, обладающий способностью освобождать дофамин из гранул пресинаптических нервных окончаний

• Дофаминолитики.

• Препараты нейролептического действия, блокирующие постсинаптические дофаминовые рецепторы с одновременным блокированием пресинаптических дофаминовых рецепторов. Считается, что подавление дофаминергической передачи нервных импульсов в различных областях ЦНС вызывает различия в спектре психотропной активности и характере побочных эффектов препаратов этой группы.

Рецепторы, сопряжённые с G-белками (II тип)	β-Адренорецепторы Рецепторы тиреотропного гормона Рецепторы адренокортикотропного гормона Рецепторы лютеинизирующего гормона Рецепторы паратгормона (костная ткань) Рецепторы вазопрессина (почки) Рецепторы глюкагона (жировая ткань)	Аденилатциклазный путь: активация аде- нилатциклазы (G _s -белок) и ингибирование аденилатциклазы (G _i -белок)	
	α ₁ -Адренорецепторы Мускариновые (м ₁ и м ₂) рецепторы Серотониновые 5-HT ₂ -рецепторы Рецепторы ангиотензина Рецепторы вазопрессина (печень)	Прямое воздействие G-белков на ионные каналы или «обменники»: кальциевые каналы; калисвые каналы; калисвые каналы; натрисво-водородный «обменник»; магниевый транспортёр	
		Фосфоинозитилный путь: «классический» фосфоинозитилный путь; фосфоинозитилный путь с активацией фосфолипазы A_2	

- Тест.
- 1. Что из себя представляет G-белок-связанный рецептор?
- А) представляют собой белки, интегрированные в плазматическую мембрану и состоящие из связки семи гидрофобных спиралей, проходящих через нее
- Б) представляют собой белки, интегрированные в плазматическую мембрану и состоящие из связки семи гидрофильных спиралей, проходящих через нее
- В) особый класс белков с аномальной третичной структурой, не содержащими нуклеиновые кислоты

- Тест.
- 1. Что из себя представляет G-белок-связанный рецептор?
- А) представляют собой белки, интегрированные в плазматическую мембрану и состоящие из связки семи гидрофобных спиралей, проходящих через нее
- Б) представляют собой белки, интегрированные в плазматическую мембрану и состоящие из связки семи гидрофильных спиралей, проходящих через нее
- В) особый класс белков с аномальной третичной структурой, не содержащими нуклеиновые кислоты

2. К G-белок-связанный рецепторам типа не относят:

- А) ангиотензиновые
- Б)α-адренорецепторы
- В) β-адренорецепторы
- Г)н-холинорецепторы
- Д) опиатные
- Е) дофаминовые

2. К G-белок-связанный рецепторам типа не относят:

- А) ангиотензиновые
- Б)α-адренорецепторы
- В) β-адренорецепторы

<u>Г)н-холинорецепторы (м-холинорецепторы!)</u>

- Д) опиатные
- Е) дофаминовые

- 3. Ацеклидин и пилокарпин вызывают локальные (при местном применение) или общие эффекты возбуждения ? рецепторов: миоз, спазм аккомодации, снижение внутриглазного давления; брадикардия, замедление предсердно-желудочковой проводимости; бронхоспазм, повышение тонуса и моторики желудочно-кишечного тракта, мочевого пузыря, матки; секреция жидкой слюны, усиление секреции бронхиальных, желудочных и других экзокринных желез. На какой рецептор воздействуют препараты?
- А)м-холинорецепторы
- Б)н-холинорецепторы
- В)опиоидные рецепторы
- Г) β-адренорецепторы

- 3. Ацеклидин и пилокарпин вызывают локальные (при местном применение) или общие эффекты возбуждения? рецепторов: миоз, спазм аккомодации, снижение внутриглазного давления; брадикардия, замедление предсердно-желудочковой проводимости; бронхоспазм, повышение тонуса и моторики желудочно-кишечного тракта, мочевого пузыря, матки; секреция жидкой слюны, усиление секреции бронхиальных, желудочных и других экзокринных желез. На какой рецептор воздействуют препараты?
- А)м-холинорецепторы
- Б)н-холинорецепторы
- В)опиоидные рецепторы
- Г) β-адренорецепторы